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Abstract

We join the goals of two giant and related fields of research
in group decision-making that have historically had little con-
tact: fair division, and efficient mechanism design with mon-
etary payments. To do this we adopt the standard mechanism
design paradigm where utility is assumed to be quasilinear
and thus transferable across agents. We generalize the tra-
ditional binary criteria of envy-freeness, proportionality, and
efficiency (welfare) to measures of degree that range between
0 and 1. We demonstrate that in the canonical fair divi-
sion settings under any allocatively-efficient mechanism the
worst-case welfare rate is 0 and disproportionality rate is 1;
in other words, the worst-case results are as bad as possible.
This strongly motivates an average-case analysis. We then
set as the goal identification of a mechanism that achieves
high welfare, low envy, and low disproportionality in expec-
tation across a spectrum of fair division settings. We es-
tablish that the VCG mechanism is not a satisfactory can-
didate, but the redistribution mechanism of [Bailey, 1997;
Cavallo, 2006] is.

1 Introduction
The starting point in designing or evaluating any prospective
group decision-making procedure is to inquire: what goals
do we want to achieve? The answer of course will depend on
the setting and who you ask. If individuals are selfish, then
each will answer “maximize the value I get from the proce-
dure”. But this is usually a non-starter because, very often,
what is optimal for one individual will be suboptimal for an-
other. A goal that has a much more plausible chance of being
endorsed by all members of the group, selfish though they
may be, is to achieve some notion of fairness. In decision
settings that have a symmetric separability in the descrip-
tion of each outcome—for instance, splitting up a divisible
good—we can consider notions such as envy-freeness and
proportionality. Does no agent prefer the outcome (alloca-
tion) obtained by another agent? Does each agent get at least
a certain proportion of the value he would obtain if he could
make the decision himself, as a dictator?

These are exactly the goals that have been taken up
and formally studied by researchers in mathematics, eco-
nomics, political science, and, most recently, computer sci-
ence working in this area. The prototypical decision setting
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addressed is that of fair division, where either a divisible
good must be split up—typically analogized as a cake to be
cut—or a set of indivisible goods is to be allocated (“as-
signed”) to a set of stakeholders.

Perhaps the most basic and well-known example of a fair
division procedure is the “you cut I choose” method for
two agents and a divisible good: one agent determines a
bisection (cuts the cake), and the other decides who gets
which piece. This simple approach achieves the desir-
able properties of envy-freeness and proportionality: neither
agent would prefer to swap pieces with the other, and both
agents—in their own estimation—obtain at least half of the
cake. Indeed, if we make no further assumptions it is dif-
ficult to see any way of improving on this approach. Yet
taking a broader perspective it is clear that a crucial aspect
of the problem has been ignored: how much does each agent
like cake? What if one of the agents’ enjoyment (call her
Alice) is only marginally improved from obtaining anything
more than a small sliver, while the other (call him Bob) ob-
tains only marginally increasing enjoyment until he obtains
a very large portion? In such a situation, intuitively we may
feel it would be more just to “tip the scale” in favor of Bob,
since his gain could be enormous while Alice’s loss would
be negligible for a skewed division.

We can formalize this intuition as a concern for social
welfare. However, as intuitively basic as the concept is, the
way we’ve described the setting so far does not allow us to
consider it—there is a problem of comparing one agent’s
welfare to another’s. When Bob claims to have lower value
for the same size piece of cake as Alice, how do we interpret
that? The comparison becomes possible if we assume that
agent utilities are quasilinear in money, as an agent’s value
for an allocation can then be interpreted as their “willingness
to pay” for it. We can then also bring to bear the power-
ful tool of monetary payments: besides receiving a piece of
cake, each agent can either be given money or have money
taken away. The (utilitarian) social welfare can then neatly
and legitimately be defined as the sum of the agent utilities.

As we will see, even granting this quasilinear context, in
general there will exist no mechanism that perfectly satis-
fies all three of our criteria: efficiency (i.e., full social wel-
fare for the agents, defined as the aggregate value of the
allocation that maximizes the sum of agent values), envy-
freeness, and proportionality. In fact, there can be no mech-



anism that yields full social welfare alone, because any un-
subsidized efficient allocation requires the agents to make
payments outside of the group. At the same time, although
previous work in cake-cutting demonstrates the existence of
perfectly envy-free and proportional allocations for arbitrary
size groups [Neyman, 1946], feasible methods for determin-
ing such allocations are currently known only for groups of
size less than 5. But the fact that procedures that perfectly
satisfy our criteria don’t exist is little reason to abandon
hope. Instead, in this paper we pursue methods that obtain
“good” performance in expectation along each metric—high
social welfare, low envy, and low disproportionality.

Related work
In this paper we build on two very significant bodies of lit-
erature: the fair division literature which typically assumes
little to nothing about the nature of agent utility functions, 1

and the mechanism design literature which takes as its foun-
dation the assumption of transferable, quasilinear utility.

Work in fair division, at least in a modern research con-
text, seems to have been initiated by Steinhaus [1948] and
Banach & Knaster (whom Steinhaus credits as discovering
one of the foundational constructive approaches), who ad-
dressed the question of proportionality for groups of size
greater than two.2 More recently, Brams has been a key fig-
ure, with coauthors, providing a series of procedures for ob-
taining envy-free allocations for 3 or 4 players that involve
a limited number of “cuts to the cake” (see the text [Brams
and Taylor, 1996]). There is currently no known procedure
for achieving an envy-free allocation for more than 4 agents
with a bounded number of cuts, although a procedure exists
for arbitrary group size that involves an unbounded number
of cuts [Brams and Taylor, 1995].

Also recently, the question of truthfulness has been in-
troduced in this context—can an agent gain from misrep-
resenting his preferences about pieces of cake? Brams et
al. [2006] consider a very limited kind of truthfulness, re-
quiring for each agent only that there exist a case (i.e., pref-
erences of other agents) where lying would not be beneficial.
Chen et al. [2010] consider a much stronger and more com-
pelling notion, in fact the standard concept of strategyproof-
ness from game theory, wherein lying can never be benefi-
cial regardless of the behavior of others; they propose a pro-
cedure that is strategyproof and proportional for restricted
classes of value functions (“piecewise uniform” and “piece-
wise linear”); Mossel and Tamuz [2010] address essentially
the same problem.

Fairness has also been studied in a context of allocating
indivisible goods (the “assignment problem”); the canonical
example is “room assignment, rent division”, where a group
of housemates must divvy up the rooms in the house and
decide what share of the rent is paid by whom. Brams and
Kilgour [2001], Haake et al. [2002], and Abdulkadiroğlu et
al. [2004] all introduce efficient procedures that (in some

1And in particular, does not assume utilities have cardinal value
that can be compared across agents.

2For two agents the “divide and choose” procedure goes back
at least to biblical times; see Brams and Taylor [1999, p. 53], who
cite the story of Abram and Lot (Gen 13:8–9).

cases) also achieve envy-freeness; however all simply as-
sume truthful participation and break down in a context of
strategic agents. This is perhaps unsurprising, as Alkan et
al. [1991] earlier showed that there exists no envy-free and
strategyproof mechanism (that is, without imposing pay-
ments that diminish agents’ welfare).

In a similar spirit to the evaluation methodology we pro-
pose in the current paper, Lipton et al. [2004] consider
measures of envy, and seek allocation procedures that are
approximately envy-free (see also [Mu’alem and Schapira,
2007]). Caragiannis et al. [2009] study the efficiency loss of
imposing various fairness constraints in a setting where util-
ity is not transferable, and assuming non-strategic agents.

Mechanism design (initiated by Hurwicz [1960] in the
modern context) introduces payments as a way to ob-
tain good outcomes in equilibrium when agents are self-
interested and strategic. The hallmark positive result is the
strategyproof and efficient Groves class of mechanisms. In
settings where no outcome yields anyone negative value, the
Vickrey–Clarke–Groves (VCG) mechanism [Vickrey, 1961;
Clarke, 1971; Groves, 1973]—an instance of the Groves
class where agents make payments commensurate with the
negative externality they impose on others—is of great inter-
est because it is ex post individually rational and no-deficit:
no agent is ever worse off from participating and aggregate
payment to the agents is never positive.

Despite these attributes, in a group decision-making prob-
lem where the goal is welfare of the members of the group,
the VCG mechanism is unsatisfactory because it generates
high revenue, payments that must be transferred outside
the group and thus detract from social welfare. Redistribu-
tion mechanisms, introduced by Bailey [1997] and Cavallo
[2006],3 address this issue by returning portions of VCG
revenue back to the agents in a way that does not violate
strategyproofness or no-deficit. Subsequent work by Guo
and Conitzer [2009; 2008] and Moulin [2009] addressed
multi-unit auctions, and provides a mechanism that maxi-
mizes the worst-case social welfare in that context.

Study of the fairness properties of strategyproof mecha-
nisms has mainly been confined to VCG. Exceptions are
[Papai, 2003], which characterizes the set of all envy-free
Groves mechanisms for assignment with super-additive val-
uations; and [Moulin, 2010]. In the assignment problem set-
ting with unit-demand, Leonard [1983] showed that VCG is
envy-free; very recently, Cohen et al. [2011] extended this
result to a generalized setting where individuals have addi-
tive value for obtaining multiple goods, up to some capacity
that is uniform across the population.

Finally, like the current paper, [Porter, Shoham, and Ten-
nenholtz, 2004] also straddles the fair division and mech-
anism design literatures, there seeking to equitably allo-
cate costly tasks throughout a population (see also [Moulin,

3Bailey was the first, to my knowledge, to derive a redistribu-
tion mechanism; his approach applies to single-item auctions as
well as some other settings. The mechanism of Cavallo [2006] co-
incides with Bailey’s in some cases but is applicable to all decision
scenarios, including important domains to which Bailey’s is not,
such as combinatorial allocation.



2010]). Interestingly, for the case of single-task allocation
the mechanism earlier proposed in [Bailey, 1997] and later
generalized in [Cavallo, 2006] is proposed.

Summary of contributions
Our first contribution will be to provide a useful evaluation
methodology: we generalize the notions of efficiency, envy-
freeness, and proportionality from the strict “yes or no” con-
ception to degrees. So, for instance, given a profile of agent
types a mechanism may yield social welfare that is close to
optimal, be close to envy-free, and close to proportional for
every agent.

Next we will motivate our relaxation of hard efficiency
and fairness constraints by establishing that, even taken in-
dividually, not only is perfect efficiency or proportionality
unachievable in the canonical fair division settings, but in
fact in any allocatively-efficient mechanism in the worst-
case agents will end up with zero welfare and the outcome
will have maximum disproportionality. In other words no ef-
ficient mechanism can guarantee any positive performance.

This moves us to seek a mechanism that performs well
in the average-case. We demonstrate that a mechanism pre-
existing in the literature—the redistribution mechanism of
[Bailey, 1997] and [Cavallo, 2006]—performs exceedingly
well on all three metrics in cake-cutting and assignment
problems; this is in stark opposition to the simpler VCG
mechanism which, we show, often performs well on envy
but performs very poorly with respect to welfare and pro-
portionality.

Preliminaries
There is a set of agents I = {1, . . . , n} and a compact
set of outcomes A, where each a ∈ A is an n-tuple
(a1, a2, . . . , an) representing an allocation for each agent
i ∈ I .4 There is a typespace Θ, the same for each agent,
which represents the set of possible private information an
agent may have. The joint typespace is Θn, and for any θ =
(θ1, . . . , θn) ∈ Θn and a = (a1, . . . , an) ∈ A, each agent
i’s value is vi(θi, ai). The value functions are symmetric, in
that ∀i, j ∈ I, ∀θj ∈ Θ, ∀a ∈ A, vi(θj , aj) = vj(θj , aj).

A mechanism is a tuple (f, T ) where f : Θn → A is a
choice function and T = (T1, . . . , Tn), with transfer func-
tion Ti : Θn → � for each agent i ∈ I . In a mechanism,
agents report types and then allocations and transfer pay-
ments are made according to f and T . We use notation f i(θ)
to denote ai for the outcome a chosen by f given type pro-
file θ (i.e., if f(θ) = a, then f(θ) = (f1(θ), . . . , fn(θ)) =
(a1, . . . , an)). We assume that each i ∈ I is self-interested
and acts to maximize a quasilinear utility function; given
mechanism (f, T ), true joint type θ, and reported type θ̂, i
obtains utility vi(θi, fi(θ̂)) + Ti(θ̂). vi(θi, ai) can thus be
considered i’s willingness-to-pay for allocation a i.

We use shorthand v(θ, a) for
∑

i∈I vi(θi, ai), and
v−i(θ−i, a) for

∑
j∈I\{i} vi(θi, ai). We use notation f ∗

for an efficient choice function (i.e., ∀θ ∈ Θn, f∗(θ) ∈
4Note that A may be infinite, as in the case of allocating an

infinitely divisible good.

argmaxa∈A v(θ, a)) and f ∗(θ−i) for an outcome that is ef-
ficient if the preferences of i are disregarded (i.e., f ∗(θ−i) ∈
argmaxa∈A v(θ−i, a−i)). The VCG mechanism defines
Ti(θ) = v−i(θ−i, f

∗(θ)) − v−i(θ−i, f
∗(θ−i)).

We will specifically consider two classes of decision prob-
lems: cake-cutting and assignment.

Cake-cutting: There is a single infinitely divisible good
to be allocated amongst the n agents. The good may be het-
erogeneous, so values may depend not just on how much but
also which part of the cake is received. In various places
we will make reference to the following special classes of
valuation functions:

• Linear satiation: value is homogeneous over all sections
of the cake and increases linearly with quantity, at slope
determined by the agent’s type, until plateauing at 1. If
agent i with type θi receives x% of the cake, he obtains
value: vi(θi, x) = min{1, xθi}. This captures different
“satiation rates”.

• Exponential: value is homogeneous over all sections of
the cake; if allocated x% of the cake, an agent i with type
θi obtains value vi(θi, x) = 1− e−xθi .

• Piecewise linear: value is heterogeneous, where if K is
the set of “kinds” of cake, each agent i’s type has a com-
ponent θi,k for every distinct kind k ∈ K . If, for each
k ∈ K , agent i is allocated xk% of the kind k cake, he
obtains value:

∑
k∈K xkθi,k.

Assignment: There are n agents and a heterogenous set
of m items to be allocated. Each agent’s type determines a
value for each item, and each agent can be allocated no more
than one item.

2 Welfare and fairness evaluation metrics
We generalize the either/or notions of efficiency, envy-
freeness, and proportionality to rates that can be com-
puted for any problem instance (defined by a joint type
θ). Throughout the paper we assume a context of
strategyproofness—we will only discuss the rates with re-
spect to strategyproof mechanisms—so the measures are
computed with respect to the truthful outcome.

Definition 1 (Welfare rate). The ratio of the aggregate so-
cial welfare for the agents including payments, to the social
value of the efficient allocation without payments. I.e., for
mechanism (f, T ) and joint type θ ∈ Θn:∑

i∈I

(
vi(θi, fi(θ)) + Ti(θ)

)
∑

i∈I vi(θi, f
∗
i (θ))

For a no-deficit mechanism (one in which aggregate pay-
ments never exceed 0), the welfare rate is bounded above by
1. A mechanism that achieves full social welfare is one with
a welfare rate of 1 for all θ ∈ Θn.5

We now introduce novel generalizations of envy-freeness
and proportionality, i.e., rates representing the average ex-
tent throughout the population to which, respectively, an
agent prefers the outcome for another agent, and an agent

5A welfare metric of this nature has been used in several previ-
ous papers on redistribution mechanisms.



fails to obtain a “fair share” 1/n fraction of the utility he
could obtain as a dictator. Both measures range between
0 and 1. In the spirit of fairness, the measures give equal
weight to each agent’s envy or disproportionality, in the
sense that, e.g., the disproportionality measure for an agent
who obtains only ε

n < 1
n times his maximum possible utility

u is the same whether u is minuscule or enormous.

Definition 2 (Envy rate). Let umax
i denote the utility an

agent i would have experienced if he received, maximizing
over all agents j, j’s allocation and j’s payment. The envy
rate equals, averaging over all agents i, the difference be-
tween umax

i and i’s utility, divided by umax
i . I.e., for mech-

anism (f, T ) and joint type θ ∈ Θn:

1

n

∑
i∈I

maxj∈I{vi(θi, fj(θ)) + Tj(θ)} −
(
vi(θi, fi(θ)) + Ti(θ)

)
maxj∈I{vi(θi, fj(θ)) + Tj(θ)}

(We take 0 for the above ratio in the case where numerator
and denominator are 0.) The envy rate never goes below 0
since each agent’s actual allocation is included in the maxi-
mization. Envy-freeness is equivalent to the requirement that
the envy rate be 0 for every problem instance.

Definition 3 (Disproportionality rate). Averaging over all
agents, the maximum of 0, and 1/n minus the ratio of an
agent’s allocation value plus payment to the value the agent
would obtain from his optimal allocation and no payment,
divided by 1/n. I.e., for mechanism (f, T ) and joint type
θ ∈ Θn:

1

n

∑
i∈I

max

{
0,

(
1

n
− vi(θi, fi(θ)) + Ti(θ)

max
a∈A

vi(θi, ai)

)/ 1

n

}

The disproportionality rate is fixed to never be below 0 for
any agent so that it penalizes the failure to meet traditional
proportionality but does not reward a mechanism for going
“above and beyond” proportionality for some agents; this is
in the spirit of fairness. Traditional proportionality is equiv-
alent to the requirement that the disproportionality rate be 0
for every problem instance.6

3 Negative worst-case results
Having established a way of evaluating any proposed mech-
anism along the three metrics of welfare, envy, and dispro-
portionality, the most natural goal would be to seek a mech-
anism that always performs well in each of the dimensions.
However in this section any such hopes are dashed: we
demonstrate that in the worst-case, any strategyproof mech-
anism for cake-cutting (with a sufficiently broad typespace)
or assignment that makes efficient allocations has welfare
rate 0 and disproportionality rate 1. That is, even if we seek
to optimize welfare or proportionality independently, in the
worst-case we can not do better than the worst possible.

While one might question our emphasis on mecha-
nisms that always choose an efficient outcome (allocatively-
efficient mechanisms), this can be motivated by considering

6The more basic idea of extending proportionality to a transfer-
able utility context is not new; see, e.g., [Cramton, Gibbons, and
Klemperer, 1987].

that a non-Pareto-efficient outcome is inherently unstable in
a transferable-utility setting: for instance in single-item al-
location if the good is allocated to an agent j not equal to the
highest valuer i, then j and i could both gain from arranging
a sale after the mechanism has been run.

We first consider the worst-case outcomes of cake-cutting.
Note that the theorem places no requirement that values
are of the linear satiation (or any other) class; it requires
only that particular linear satiation type values are possible.
(Proofs are omitted due to space constraints, but we provide
a sketch demonstration of the worst-case welfare and dispro-
portionality results.)

Theorem 1. For n ≥ 2 agents and any cake-cutting types-
pace that is smoothly connected and admits linear satiation
values with slope 0 and n−1, any mechanism that is efficient
in dominant strategies, ex post individually rational, and no-
deficit has worst-case welfare rate 0 and disproportionality
rate 1.

Proof Sketch. It can be shown that for any smoothly con-
nected typespace that admits value 0 for all outcomes, in any
mechanism that is truthful and efficient in dominant strate-
gies, ex post individually rational, and no-deficit, no agent’s
payment exceeds that which VCG prescribes by more than
the amount of VCG revenue that would result—fixing the
reports of others—if the agent reported value 0 for all out-
comes. (See also Chapter 3 of [Cavallo, 2008].)

Now, for any n ≥ 2 a cake-cutting example with linear sa-
tiation values can be constructed where: social value equals
n − 1; VCG revenue equals n − 1 (so social utility is 0);
and zero VCG revenue would result if any one given agent
instead reported value 0 for all outcomes. By the result de-
scribed above, no mechanism meeting the required criteria
yields more agent welfare than VCG here, so none yields a
welfare rate exceeding 0. Moreover, in the same example
each agent’s optimal allocation value is positive and under
any mechanism meeting the criteria each agent’s utility is 0,
yielding a disproportionality rate of 1.

Using the same type of proof technique, a similar result
can be established for the assignment problem:

Theorem 2. For the assignment problem with n ≥ 2 agents
and n items, if each agent’s value space is smoothly con-
nected and admits values 0 and x for each item for some
x > 0, any mechanism that is efficient in dominant strate-
gies, ex post individually rational, and no-deficit has worst-
case welfare rate 0 and disproportionality rate 1.

These results demonstrate the impossibility of designing
an efficient mechanism that satisfies any worst-case robust-
ness criteria at all with respect to welfare or disproportion-
ality.7 To complete this line of inquiry we consider envy.

7The result of Theorem 2 can also be achieved for the n − 1
items case but does not extend all the way down to the single-item
case. [Guo and Conitzer, 2009] and [Moulin, 2009] provide the
mechanism with the optimal worst-case welfare rate for single-item
allocation, and the rate is greater than 0; furthermore, welfare rate
greater than 0 necessarily implies disproportionality rate less than
1. An alternative derivation of the worst-case welfare rate for n
agents could proceed fairly directly from results in these papers.



For assignment it is known that there exists an allocatively-
efficient mechanism that is completely robust to envy: VCG
is envy-free (see [Leonard, 1983; Cohen et al., 2011]). For
cake-cutting we do not provide a tight worst-case result
(envy will be less than 1 in allocatively-efficient outcomes,
and the best worst-case bound will be domain dependent),
but we do establish the following bound:

Theorem 3. For any cake-cutting typespace that is smoothly
connected and admits linear satiation values with slope 0
and n, any mechanism that is efficient in dominant strate-
gies, ex post individually rational, and no-deficit has a
worst-case envy rate of at least n−1

2n .

4 Fairness of the redistribution mechanism
While the previous section demonstrates that in core fair di-
vision settings the worst-case welfare and disproportionality
rates are as bad as possible, of course this does not preclude
the existence of solutions that perform very well on aver-
age, i.e., achieve good rates in expectation. The most well-
known general social choice mechanism is VCG; but though
VCG always achieves an outcome in dominant strategies
that maximizes the sum of agent values, it often involves
much of this value being transferred away from the group
(high “revenue”). In fact amongst all allocatively-efficient
and ex post individually rational mechanisms, VCG speci-
fies the maximum transfer of value outside of the group (see
Theorem 2.10 of [Cavallo, 2008]), and in this sense is worst.

In settings that are extremely lacking of structure, such as
that in which each agent’s value function over outcomes is
completely unrestricted, no improvement over VCG is pos-
sible. However, in practically all allocation settings values
have significant structure; for instance, an agent typically
obtains 0 value for any outcome in which he does not re-
ceive an item. Exploiting this structure to improve welfare is
the idea introduced, for restricted settings, by Bailey [1997],
and in the general case, by Cavallo [2006]. The general re-
distribution mechanism (RM) proposed in [Cavallo, 2006] is
as follows: implement VCG, then pay each agent 1/n times
the minimum VCG revenue that could result considering all
possible types the agent could report. (In some allocation
settings, including those we focus on here, the Bailey and
Cavallo proposals coincide.)

To illustrate the mechanism we consider a divisible good
(cake-cutting) problem with 3 agents, where values for the
good are exponential and as depicted in Figure 1. The ef-
ficient outcome (implemented by both VCG and RM) allo-
cates 6% of the good to agent 1, 48% to agent 2, and 46%
to agent 3, which yields value of 0.047, 0.619, and 0.746 to
the respective agents. Under the VCG mechanism agents 1,
2, and 3 are then respectively paid: −0.044, −0.317, and
−0.307. Thus the welfare rate of VCG is:

0.047 + 0.619 + 0.746− 0.044− 0.317− 0.307

0.047 + 0.619 + 0.746
= 0.53

To calculate redistribution payments under RM for each
agent we compute the revenue that VCG would have yielded
if the agent had value 0 for any size piece of cake, fixing the
types of the other agents, and divide this number by 3 (this
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Figure 1: Example exponential value functions for three
agents in a cake-cutting problem.

equals 0.135 for agent 1, 0.130 for agent 2, and 0.148 for
agent 3). Thus under RM the agents are respectively paid
0.091, −0.187, and −0.159; and the welfare rate is:

0.047 + 0.619 + 0.746 + 0.091− 0.187− 0.159

0.047 + 0.619 + 0.746
= 0.82

The envy rate is 0.046 under VCG and 0.027 under RM.
Both mechanisms are proportional in this example for agents
2 and 3, but VCG is highly disproportional for agent 1, while
RM is much less so. This leads to a disproportionality rate
of 0.328 for VCG and 0.083 for RM.

We will now establish some strong distribution-
independent distinctions between VCG and RM. First a fact
that follows trivially from the definition of RM:

Theorem 4. On any problem instance, in any setting, RM
has a weakly higher welfare rate and weakly lower dispro-
portionality rate than VCG.

Now in the case of assignment of a single good we can
establish a particularly strong contrast between VCG (which
reduces to a second-price auction) and RM with respect to
the traditional binary fairness properties. RM reduces to the
following simple form: the high bidder is allocated the good
and pays the second highest bid, and every agent is then paid
1/n times the second highest bid amongst the other agents.

Theorem 5. In any single-item assignment problem in-
stance, RM yields an outcome that is envy-free and propor-
tional for at least n− 2 agents; VCG yields an outcome that
is envy-free for all agents but proportional for a maximum
of 1 agent that has non-zero value for the item.

Thus, at least in single-item assignment, RM is inherently
fair. Moreover, the fairness performance it achieves is not
simply a necessary implication of its welfare rate, which we
demonstrate by example here. Consider the following alter-
native redistribution mechanism, which we’ll call “Mecha-
nism X”: VCG is implemented, and then an arbitrary agent
(say, agent 1) chosen a priori receives the minimum VCG
revenue that could result taken over all possible types he
could report, fixing the reports of others. Now consider a
single-item assignment example where agents 1, 2, 3, and 4
have values 10, 8, 8, and 6, respectively. Under RM agent



1 gets the item and pays 6, and the other agents all receive
payment 2. Under Mechanism X agent 1 gets the item and
pays 0, and all other agents receive nothing. Both mecha-
nisms achieve a welfare rate of 1 on this example—in fact
the expected welfare rate of both mechanisms is identical
for any symmetric distribution over agent values—but RM’s
envy rate is 0 and disproportionality rate is 0.15, whereas
Mechanism X’s envy and disproportionality rates are both
0.75. The “even-handed” redistribution of RM gives it an
exceptional tendency towards achieving fair outcomes.

5 Average-case evaluation
The results of Section 3 motivate the goal of finding a mech-
anism that performs well in expectation in a wide array of
settings, and Section 4 provides some basic evidence that
the redistribution mechanism may fit the bill. Here we verify
this, evaluating VCG and RM along the metrics of welfare,
envy, and disproportionality introduced in Section 2 in the
average case given a probability distribution over types.

We start with cake-cutting and consider values drawn
from the linear satiation class (with typespace [0, n]), the
exponential class (with typespace [0, 9]), and the piecewise
linear class (with 3 kinds of cake and value space [0, 1] for
each kind). We examined a type distribution that is uniform
over the typespace; in the case of piecewise linear values
the typespace is multidimensional, and we considered val-
ues that are uniformly distributed and independent across
different kinds of cake. The results are given in Table 1. 8

In all three cake-cutting settings VCG performs poorly with
respect to welfare and proportionality, but has a low (but
positive) envy rate. RM performs very well along all three
measures, notably with welfare going to 1 and dispropor-
tionality to 0 as the population size grows.

metric n VCG RM

WR

3 0.566 0.728
5 0.505 0.852
10 0.459 0.936
15 0.442 0.959

ER

3 0.032 0.116
5 0.029 0.076
10 0.018 0.026
15 0.015 0.013

DR

3 0.361 0.171
5 0.376 0.027
10 0.373 0.000
15 0.375 0.000

(a)

VCG RM
0.719 0.825
0.569 0.898
0.417 0.956
0.347 0.974
0.041 0.041
0.021 0.012
0.006 0.002
0.003 0.001
0.126 0.041
0.224 0.000
0.355 0.000
0.431 0.000

(b)

VCG RM
0.333 0.778
0.200 0.920
0.100 0.980
0.067 0.991

0 0.011
0 0.011
0 0.007
0 0.004

0.532 0.050
0.693 0.002
0.835 0.000
0.887 0.000

(c)

Table 1: Cake-cutting. Expected welfare (WR), envy (ER),
and disproportionality (DR) rates under VCG and RM in
three different cake-cutting value settings: (a) linear satia-
tion, (b) exponential, and (c) piecewise linear.

8Expected values were computed via Monte Carlo sampling,
with each data point averaged over 2000–10000 (depending on the
setting) random joint type instances. For all cases we also exam-
ined Gaussian type distributions, and variants with more or less
kinds (heterogeneity) of cake for the piecewise linear value setting;
results were very similar so we only present the uniform case.

metric n VCG RM

WR

3 0.882 0.907
5 0.864 0.915
10 0.878 0.94
15 0.895 0.955

ER

3 0 0.02
5 0 0.021
10 0 0.013
15 0 0.009

DR

3 0.015 0.013
5 0.001 0.001
10 0.000 0.000
15 0.000 0.000

(a)

VCG RM
0.457 0.528
0.372 0.491
0.269 0.389
0.211 0.318

0 0.233
0 0.171
0 0.109
0 0.082

0.463 0.391
0.31 0.183
0.162 0.041
0.111 0.012

(b)

VCG RM
0.337 0.781
0.281 0.833
0.2 0.901
0.16 0.932

0 0.195
0 0.1
0 0.044
0 0.026

0.765 0.202
0.532 0.007
0.301 0.000
0.208 0.000

(c)

Table 2: Assignment. Welfare (WR), envy (ER), and dis-
proportionality (DR) rates under VCG and RM in the as-
signment problem with n agents and different numbers of
items: (a) n items; (b) n− 1 items; and (c) n− 2 items.

We also evaluated the mechanisms in different versions
of the assignment problem. Here each agent’s type is rep-
resented as a vector of m values, one for each item. In
our evaluation we took values drawn independently and uni-
formly over [0, 1] for each item. We present results for the
following cases, with n the number of agents: n items; n−1
items; and n− 2 items. The results are depicted in Table 2.

Somewhat surprisingly, in the n-item assignment prob-
lem (Table 2a) we find that VCG is a serviceable solution,
obtaining a reasonably high welfare rate, zero envy, and a
low disproportionality rate (surprising because in all other
settings we considered, VCG welfare is low and dispropor-
tionality high). Moving to RM improves the welfare rate at
the cost of a marginal increase in the envy rate. In the case of
n− 1 items (Table 2b), neither VCG nor RM achieve near-
optimal performance: RM’s welfare rate is significantly bet-
ter than VCG’s, but both are poor. When there are n − 2
goods (Table 2c), VCG is poor while RM shines.9

Finally we consider the case of assignment with one good,
i.e., single-item allocation. In this case there exists another
strategyproof mechanism in the literature to which we can
compare VCG and RM: the worst-case optimal mechanism
of [Guo and Conitzer, 2009] and [Moulin, 2009] (which
we’ll label GCM), which we also implemented and tested.
The mechanism’s description is complex, so for it we refer
the reader to the source papers. Both RM and GCM per-
form superbly with respect to welfare and proportionality;
VCG’s welfare and disproportionality rates are abysmal, but
it achieves no-envy, as in all assignment problems. RM’s
expected envy rate is only approximately 1/3 of GCM’s,
though both are quite low.

9Due to space constraints we do not report results for all possi-
ble numbers of items; but informally, as the number decreases from
n− 2 to 1, the results corroborate the pattern one would infer from
the n − 1 (Table 2b), n − 2 (Table 2c), and 1-item (Table 3) data:
VCG’s performance degrades while RM’s, if anything, ascends.



metric n VCG RM GCM

welfare

3 0.334 0.774 0.774
5 0.196 0.921 0.893
10 0.1 0.98 0.991
15 0.067 0.991 ∼1.0

envy

3 0 0.199 0.199
5 0 0.056 0.126
10 0 0.012 0.037
15 0 0.005 0.015

disproportionality

3 0.764 0.207 0.207
5 0.867 0.057 0.069
10 0.935 0.012 0.011
15 0.957 0.005 0.005

Table 3: Single-item allocation. Welfare, envy, and dispro-
portionality rates under VCG, RM, and GCM in the assign-
ment problem with a single item.

6 Conclusion
In many group decision-making settings, solutions that excel
only at achieving welfare or fairness—but not both—will be
unsatisfactory; in this paper we addressed the simultaneous
pursuit of both goals. We started by developing a suitable
evaluation methodology that goes beyond the coarse binary
efficiency and fairness concepts. Then we showed that with
strategic agents it is impossible to achieve any welfare or
proportionality in the worst-case. So we moved to seek a
successful mechanism for the average-case and discovered
that, at least for the settings under consideration, this did
not require design of a new mechanism. We demonstrated
that, unlike the VCG mechanism, for groups of more than
a few agents the redistribution mechanism comes very close
to perfect welfare and fairness across an array of canonical
fair division settings. These attributes were previously un-
known, and reveal it to be a compelling solution for group
decision-making when utility is transferable and the objec-
tive is fairness, welfare, or achieving both simultaneously.
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