
Sponsored Search Auctions with Rich Ads

Ruggiero Cavallo

Yahoo Research

New York, NY

cavallo@yahoo-inc.com

Prabhakar Krishnamurthy

Yahoo Research

Sunnyvale, CA

pkmurthy@yahoo-

inc.com

Maxim Sviridenko

Yahoo Research

New York, NY

sviri@yahoo-inc.com

Christopher A. Wilkens

Yahoo Research

Sunnyvale, CA

cwilkens@yahoo-inc.com

ABSTRACT
The generalized second price (GSP) auction has served as
the core selling mechanism for sponsored search ads for over
a decade. However, recent trends expanding the set of al-
lowed ad formats—to include a variety of sizes, decorations,
and other distinguishing features—have raised critical prob-
lems for GSP-based platforms. Alternatives such as the
Vickrey-Clarke-Groves (VCG) auction raise di↵erent com-
plications because they fundamentally change the way prices
are computed. In this paper we report on our e↵orts to re-
design a search ad selling system from the ground up in this
new context, proposing a mechanism that optimizes an en-
tire slate of ads globally and computes prices that achieve
properties analogous to those held by GSP in the original,
simpler setting of uniform ads. A careful algorithmic cou-
pling of allocation-optimization and pricing-computation al-
lows our auction to operate within the strict timing con-
straints inherent in real-time ad auctions. We report per-
formance results of the auction in Yahoo’s Gemini Search
platform.

1. INTRODUCTION
Very early in the history of sponsored-search advertising,

all the major platforms settled on some version of the Gener-
alized Second Price (GSP) auction as the mechanism used to
sell search ad spots. GSP has had remarkable staying power,
apparently serving search ad marketplaces well for over a
decade. However, recent trends expose problems stemming
from the rigidity of traditional GSP-bound platforms: ads
now come in various sizes and formats, and a mechanism
that simply sorts ads and prices each based on competition
from the ad below will have significant ine�ciencies and un-
sought incentive properties.

For instance, imagine that a search platform has a priori
allotted 12 lines at the top of the search page for advertise-

c�2017 International World Wide Web Conference Committee (IW3C2),

published under Creative Commons CC BY 4.0 License.

WWW 2017, April 3–7, 2017, Perth, Australia.

ACM 978-1-4503-4913-0/17/04.

http://dx.doi.org/10.1145/3038912.3052703

.

ments. In the“old world”all ads were three lines long (just a
title, url, and description line), and so in this 12-line example
there would be precisely four available ad slots, regardless
of which advertisers bid. But in the “new world” there may
be ads that have the basic three lines plus additional lines
of sitelinks (taking the user directly to specific sections of
the advertiser’s landing page), star-ratings, location infor-
mation, a phone number, etc. An example of some of these
ad extensions and decorations on Yahoo’s search platform is
given in Figure 1.

1

Figure 1: All highlighted sections of the above image
are optional extensions to the basic three-line ad
format. The search platform can include or omit
them at its discretion in order to optimize the overall
slate of ads presented to the user.

In the new world of heterogeneous ads, an ad packing prob-
lem emerges. In a context where ads can vary in length, the

search platform faces the richer problem of deciding which
versions of which ads—and how many—to show. Whether
it’s best to show a larger or smaller version of an ad may de-
pend on which size-variants of competing ads are available.
Perhaps one giant ad should be chosen to fill the entire space,
or perhaps it’s better for the giant ad to be “trimmed” to a
more moderate size and paired with a second small ad below
it, or perhaps a slate of several three-line ads is best, etc.
An illustration of the packing problem is given in Figure 2.

1
2
3
4
5

1
2
3
4

1
2
3

1
2
3
4
5
6
7

1
2
3
4
5
6
7

Figure 2: An illustration of the ad packing prob-
lem that arises in a context with ads of varying size.
Imagine there are three ad candidates, of size 5, 4,
and 3, respectively (illustrated at left), and seven
lines of total available ad space. Imagine that a
ranking of the ads (by whatever metric one chooses)
puts them in decreasing order of size. A greedy al-
gorithm will place the five-line ad, and then have no
ability to fill the remaining two lines (top right). It
may be more e�cient to instead place the four- and
three-line ads (bottom right).

To deal with this new world, in this paper we rethink the
search ad allocation and pricing problems from the ground
up, proposing a mechanism that optimizes an entire page of
ads globally. The e�ciency-maximizing ad allocation prob-
lem can be formulated as an integer program; however, for
a number of reasons, solving it this way is unwieldy in prac-
tice. We instead approach the problem explicitly as a search
through the space of possible ad slates. The specific solution
we implement is local-search based and not guaranteed to
find an optimal configuration, but in practice its distance
from optimality is negligible.

The main feature of the classic approach that we retain
is a separable click-probability model, wherein it is assumed
that the probability that a given ad will be clicked is equal to
the product of an ad-variant-specific“ad clickability”number
and an ad-variant-independent “location clickability” num-
ber. Even here, though, innovations are required: the “loca-
tion clickability”number can no longer be associated with an
ad slot, since the starting-position of the ith ad now depends
on what kind of ad variants were shown above — location
clickability for us is now a function of starting-line-position
rather than slot-number.

The most technically novel contribution of this work is
probably the approach we take to computing prices. It is

most common to think of an allocation and pricing mech-
anism as proceeding in two stages — an allocation is com-
puted, and from it (and the bids that generated it) prices are
subsequently calculated. This two-phase approach makes a
great deal of conceptual sense, but in our setting even frac-
tions of a millisecond of compute-time are critical, and so a
more integrated solution was required. Noting that the most
salient pricing schemes can all be described in terms of the
allocation function x (where xi(bi) is the probability of bid-
der i receiving a good—here, an ad click—given that he bids
bi), during the local search phase of the algorithm we “log”
key information from which we can, ultimately, very quickly
compute each bidder’s allocation function. Then, whatever
pricing scheme is chosen, it can be applied by essentially just
“reading o↵” prices from the computed allocation functions.

1.1 Related work
The problem of rich ads in search is well known, but not

as well studied. In one sense, there is little to do — the
elegant Vickrey-Clarke-Groves (VCG) auction reduces any
problem related to rich ads to a modeling and optimization
problem if one buys into it, and Facebook and Google have
both leveraged VCG for this very reason [15].

The primary challenge for rich search ads is that market-
places have been running GSP auctions for years; two thin
lines of work consider the consequences. The first line of
work studies GSP-like mechanisms in more complex opti-
mization domains: papers by Deng et al. [5], Bacharach et
al. [2], and Cavallo and Wilkens [4] generally show negative
results that equilibria may be poor or nonexistent. The sec-
ond line of work instead aims to convert GSP bidders to
VCG bidders with minimal issues [1].

More broadly, a long line of work starting with Varian [14]
and Edelman, Ostrovsky and Schwarz [8] studies GSP and
attempts to rationalize its use, e.g., by showing the exis-
tence of good equilibria or showing that GSP is more robust
when click-through-rates have error [6, 13]. More recently,
we argue that advertisers do not have quasilinear utilities
and that GSP may in fact be the truthful auction [3,16,17].

These prior works are all largely theoretical in nature.
In the current paper, while we do make some conceptual
and modeling contributions, a large emphasis is on reporting
about what we think is an interesting large-scale engineering
task: how to solve a computationally hard market-based
problem in a feasible amount of time under severe runtime
constraints. That dimension of our work strongly connects
with many other studies from very di↵erent domains, such
as [9, 10,12], to name a few.

2. THE AD ALLOCATION PROBLEM
We start with a formal description of the ad allocation

problem. There is a set A of ad “candidates”; each a 2
A has a height h(a) and is associated with an advertiser
↵(a) 2 ⇤, where ⇤ is the set of all advertisers. At most one
ad per advertiser can appear on the page. There are also
configurable limits on the number and cumulative height of
ads that can be shown on a single page: no more than ADLIM

ads occupying a total of H lines can be selected.
Each ad a has an associated bid b↵(a) and click probability

density pa. b↵(a) can be interpreted as the advertiser’s claim
about how much value he will receive should one of his ads be
clicked (it is the same for all of his ads). The click probability
density pa is a more novel concept: it can be thought of

as a kind of normalized “click probability per line” for the
ad. In combination with the line-specific location-clickability
parameters,1 it determines pa(k) for each k 2 {0, . . . , H �
1 � h(a)}, which is the search platform’s estimate of the
probability with which a will be clicked if it is placed at
starting line k.

Each ad also has an associated vector of“costs”, where cost
can loosely be thought of as the externality the ad imposes
(on the user, the search platform, etc.) if it is shown; ca(k)
denotes this cost when ad a is placed at starting line k 2
{0, . . . , H�1�h(a)}. One simple way costs may be deployed
in practice is to assign a constant value to every ca(k), for
every a and k, using that constant as a knob with which to
tune the average advertising footprint on the page.

For each ad a 2 A and line j 2 {0, . . . , H � 1 � h(a)}, let
Laj = {k : j � h(a) + 1 k j}, i.e., if an ad a starts on
line i 2 Laj then the ad a covers line j.

Our goal is to maximize e�ciency, i.e., total advertiser
value net of costs imposed by the chosen configuration of
ads. Letting za,k be a boolean variable denoting whether or
not ad a is placed at starting line k, we can formulate the
problem as follows:

maximize
H�1X

k=0

X

a2A

(ba pa(k)� ca(k)) · za,k (1)

subject to
H�1X

k=0

X

a:↵(a)=i

za,k 1, 8i 2 ⇤, (2)

X

a2A

X

k2Laj

za,k 1, 8j 2 {0, . . . , H� 1}, (3)

H�1X

k=0

X

a2A

za,k ADLIM, (4)

za,k 2 {0, 1}. (5)

Constraint (2) says that we can choose at most one ad
variant per advertiser. Constraint (3) says that each line
can be covered by at most one ad. This constraint also
implicitly encodes the fact that our solution can use at most
H lines. Constraint (4) limits the total number of ads chosen
by the solution.

The above is an integer program that can be solved with
standard methods. Even though the problem is strongly NP-
hard (by the reduction from 3-PARTITION), the number of
possible ad candidates is bounded, and so asymptotic run-
time analysis is really not relevant. However, the runtime
constraints of this environment are extremely severe — to
create an experience of “instant service” for search users, ev-
ery millisecond counts, and there may not always be time to
solve this integer program.

2.1 Our algorithm
Motivated by runtime constraints, we opt for a local-

search based heuristic approach to the problem. Our al-
gorithm, described below in Figure 3, virtually always ob-
tains an optimal solution, but in a much shorter period of
time; moreover, it has an “anytime” property — in the rare
event of an instance that cannot be solved within our time-

1These may be calculated naively based on empirical click-
through-rates for every line of the page. More sophisticated
approaches that seek to avoid selection bias may also be
applied; we do not delve into such details here.

constraints, the local search can be shut down and the in-
termediate solution taken.

The algorithm starts by doing something akin to tradi-
tional GSP: it orders ads by bid times click probability—
except here we use click probability density since ads vary
in length—and then chooses a slate greedily. But while this
is where traditional GSP ends, it is only a starting point for
us. The core of the algorithm iteratively modifies the slate
through a series of ad swaps until no improving swaps can
be made. We find solutions in this way for every possible
size slate, and then choose the best one.

For ad slate cardinality K 2 {1, . . . , ADLIM}:

1. A greedy starting allocation –

(i) Order A by bid times click-probability density.

(ii) Select the first K ad candidates in the ordered
list, iteratively reducing the set of available
candidates to respect the one-ad-per-advertiser
and total height constraints.

2. A local search loop of 1-for-1 ad swaps –

Observe objective value X (Eq. 1).

For each ad a in the current solution (from top to
bottom):

(i) Remove a from the slate.

(ii) For each ad b in the set of ads that are not part
of the current solution (including ad a), for each
slot that b can feasibly be inserted into:

• Insert b and observe the objective value.

• If it exceeds X, log the swap and go to (2.).

(iii) No swap for a improved the objective, so return
a back to its original position.

Execution for the cardinality K iteration completes
when there exists no 1-for-1 ad swap that improves
the objective value.

The best of the K locally optimal solutions is chosen.

Figure 3: A description of our heuristic ad allocation
algorithm. In the first phase a rank-based configu-
ration, akin to what vanilla GSP would produce, is
chosen. Then in phase two it is iteratively improved
until a local optimum is reached.

What are the possible vulnerabilities of this algorithm —
i.e., in what cases might we get stuck in a local optimum
that is not globally optimal? This may happen only in cases
where swapping more than one ad at a time is required. Note
that the absence of “1-for-2” swaps and the like is strongly
mitigated by the fact that we find a local optimum for every
possible cardinality ad slate. We will report detailed per-
formance statistics in Section 4. For now, su�ce it to say
that the algorithm rarely leaves significant e�ciency on the
table.

3. PRICING
Our pricing implementation maximizes flexibility by esti-

mating each bidder i’s allocation curve xi.
2 The allocation

xi is a common tool in theory because it fully captures what
an advertiser needs to know when selecting a bid. However,
auctions in practice rarely construct xi explicitly; instead,
they rely on computations that indirectly reference it. For
example, externality pricing in the VCG auction is com-
puted by removing each bidder one at a time and computing
the negative e↵ect on others — this computation happens
to be equal to the area above xi.

In our case, having direct access to xi is important for
two reasons. First and foremost, as we will discuss later,
we strive to maintain GSP-like pricing, and our formulation
e↵ectively requires full knowledge of the curve xi. Second,
having access to xi gives substantial flexibility in pricing
if Yahoo wishes to change in the future, say, if competitors
switch to a di↵erent pricing function such as VCG and Yahoo
feels compelled to follow suit.

We will first discuss how we estimate xi e�ciently; then
we will discuss a handful of possible pricing strategies and
motivate GSP-like prices.

3.1 Estimating allocation curves
The local search optimization explores a wide variety of

slates; we want to use these slates to e�ciently construct
an approximation of xi. Since the allocation curve will
be piecewise-constant,3 our desired output is a sequence
of thresholds ⌧i[0], . . . , ⌧i[k] and a sequence of allocations
x̂i[0], . . . , x̂i[k], where the final estimated allocation is given
by:

x̂i(bi) =

(
x̂i[j] for bi 2 [⌧i[j � 1], ⌧i[j])

x̂i[k] for bi � ⌧i[k � 1]
.

This is conceptually easy to compute in a näıve way: iden-
tify the breakpoints ⌧i by repeated binary search. Unfortu-
nately, this will require too much time, as the allocation
algorithm must be run at every stage of the binary search.
We therefore instead leverage the work of local search to
construct an approximation.

The approximate allocation x̂i.

Note that if we run the optimal algorithm, bidder i’s al-
location can be written as xi(b) = xi(argmaxC OBJ(C, b))
where xi(C) is the allocation probability (probability of a
click) on i’s ad in slate C. Given any subset of possible
slates S, we can then define an approximation x̂i by tak-
ing the argmax over only those slates in S, i.e., x̂i(b) =
xi(argmaxC2S OBJ(C, b)). We use this idea to define x̂i:

Definition 1. The local search approximation of the allo-
cation curve is

x̂i(b) = xi

✓
argmax

C2LS
OBJ(C, b)

◆
,

2In our setting there are a variety of non-null outcomes
(ranging over ad variants and the slots they may appear
in) that any given bidder may receive; but an “allocation”
can be reduced to the one dimension that determines adver-
tiser value: probability of click. xi(bi) is thus the probability
with which i receives a click in the outcome yielded when he
bids bi and all other bidders’ bids are held constant.
3Each piece corresponds to a region of the bid space that
yields the same allocation.

where LS denotes the set of slates considered by the local
search algorithm.

Note that the approximation x̂i is the exact allocation
assuming that the mechanism always explored a fixed set
of slates and selected the optimal one.4 However, since the
mechanism will explore di↵erent slates for di↵erent bids, x̂i

can both over- and under-estimate xi. The accuracy of x̂ as
an approximation of x will be discussed in Section 4.

Computing x̂i efficiently.

Note that for any slate C and bids b, we have

OBJ(C, b) =
X

i2⇤

⇣
xi(C)bi � ci(C)

⌘

In particular, fixing bidder i this can be written as
OBJ(C) = zi,C + xi(C)bi, where

zi,C =
X

j2⇤\{i}

�
xj(C)bj � cj(C)

�
� ci(C)

is independent of bi. If we let �i(bi) denote the optimal
objective value when i reports bi (holding b�i fixed), we can
write:

�i(bi) = max
C

�
zi,C + xi(C)bi

Each slate C yields a distinct zi,C + xi(C)bi (i.e., objective
value as a function of bi) line, and �i is the upper-envelope
of these lines. Importantly, i’s allocation when reporting bi
is the slope of the upper envelope at bi:

Observation 1. The optimal objective value �i, as a
function of bid bi, for a set of slates S is the upper-envelope
of the lines {zi,C +xi(C)bi} associated with the slates C 2 S.
The associated allocation function x̂i is the slope of the upper
envelope d�i

dbi
.

This implies a straightforward method to compute x̂i, il-
lustrated in Figure 4.

Observation 2. The upper envelope is convex, therefore
its slope is nondecreasing and the allocation x̂i is nonde-
creasing.5

3.2 Pricing methodologies
The beauty of an approach like this, which e�ciently con-

structs an accurate representation of an entire allocation
curve for each bidder, is that an array of diverse pricing
functions can be accommodated—all with the same under-
lying infrastructure—with only a quick switch of the final
“price read-o↵” stage (step 2 in Figure 4).

While we will ultimately settle on prices that mimic GSP,
three pricing strategies are worthy of discussion here: first-
pricing, VCG pricing, and GSP pricing. Each strategy has
its own strengths and weaknesses.

4Said in terms of another standard mechanism, x̂i is the al-
location of a maximal-in-range allocation on the set of slates
LS.
5This should not be confused with a claim that xi is non-
decreasing; if the local search fails to consider the right
set of possible slates, its suboptimalities may lead to non-
monotonicities in the actual allocation function x. x̂i re-
mains monotonic by construction.

Every time the objective value of a feasible slate C
is computed in local search, store xi(C) and zi,C =P

j2⇤\{i}
�
xj(C)bj � cj(C)

�
� ci(C) for each bidder i.

After local search terminates:

1. For each bidder i, compute �̂i as the upper envelope
of the lines:

{zi,C + xi(C)bi}

This gives a piecewise linear function �̂i composed
of lines (in order):

(zi[0], x̂i[0]), (zi[1], x̂i[1]), . . . , (zi[k], x̂i[k]),

with inflection points:

⌧i[0] = 0, ⌧i[1], . . . , ⌧i[k] .

2. Read o↵ the (stepped) allocation curves as the
derivative of the upper envelope:

x̂i(bi) =

(
x̂i[j] for bi 2 [⌧i[j], ⌧i[j + 1])

x̂i[k] for bi � ⌧i[k]

Figure 4: Algorithm for constructing an estimated
allocation curve x̂i.

First-pricing.

First-price auctions (advertisers pay exactly what they
bid) are convenient to implement but create major issues.
Simple implementations are proven to be unstable both
in theory and in practice [7]. While stability can be re-
stored [11], bidders must adopt a new bidding language.
Perhaps more damningly, first-price semantics would likely
upset advertisers who are generally accustomed to a second-
price discount on search.

VCG pricing.

Running a traditional Vickrey-Clarke-Groves (VCG) auc-
tion is appealing for many reasons, but is ultimately an un-
satisfactory solution. On the plus side, first, standard theory
says that it is the truthful auction. Second, VCG prices can
be e�ciently computed as externalities — it is su�cient to
rerun the optimization as a black box n additional times,
then compute the negative e↵ect each bidder has on the
others. This mathematical abstraction naturally leads to a
practical implementation abstraction, making VCG prices
easy to implement. As a result, VCG has become the indus-
try standard auction when facing a complex optimization
problem [15].

However, VCG is not a perfect solution. Practically
speaking, the marketplaces that use VCG pricing have gen-
erally done so from an early stage — we are unaware of any
mature markets that have transitioned from GSP to VCG.
The main challenge is that advertisers will need to change
their bidding strategies; until they do, the auctioneer will
generally lose money. Even assuming bidders eventually re-
act, obtaining a smooth transition is a tricky task [1]. Even
worse in our particular circumstance, it is unclear that ad-
vertisers will be responsive given Yahoo’s market share.

More subtly, it is not clear that VCG is truly the best auc-
tion from a theoretical viewpoint for reasons having to do

with questions regarding which utility model best reflects
advertiser preferences. In particular, our prior work even
suggests that GSP might be the appropriate incentive com-
patible auction [3, 17].

Generalized GSP pricing.

A natural solution is to stay with GSP pricing; the chal-
lenge is to define what that means. A traditional GSP auc-
tion sorts ads by a ranking score and charges each bidder
the minimum bid required to hold its rank. This is sensible
when the auction is simply assigning ads to ranks; but when
the auction makes a complex trade-o↵ over the features of
an ad, this is no longer well-defined. A theoretical literature
strives to justify GSP’s use; however, it fails to identify the
defining properties of GSP that one would need in order to
generalize it.

Based on our prior work, we propose that GSP be gener-
alized as the truthful auction for value maximizing bidders
(see [3, 16, 17] for a thorough treatment). A value maximiz-
ing bidder wants to get as many clicks as possible without
paying more than its value, i.e., to maximize xi while keep-
ing pi vi. In contrast, a traditional model assumes bidders
maximize expected profit (vi � pi)xi.

Defining truthful prices for these bidders in our auction
leads to a pricing intuition often given to the GSP price:6

Definition 2. The truthful price pi for a value maximizer
is pi[j] = ⌧i[j] when i gets allocation xi[j].

That is, pi is the minimum bid advertiser i must submit to
maintain the same allocation.

This gives us a candidate auction: when i gets allocation
xi[j], charge pi[j] = ⌧i[j]. Unfortunately, this auction may
“overcharge.” For example, if xi[j] ⇡ xi[j � 1] (there’s a
tiny step in the allocation function) but ⌧i[j] � 2⌧i[j � 1]
(there’s a large di↵erence in the minimum bids that yield
the two allocations), an advertiser might not care whether
it gets allocation xi[j] or xi[j � 1], but this GSP auction
could charge a 2x premium for the higher allocation. This
is illustrated in Figure 5. The problem arises because the
value maximizing model assumes bidders are willing to pay
an unrealistically large price for a tiny increase in allocation.

To refine our version of GSP, we choose a middle ground
between VCG pricing and GSP pricing using ideas intro-
duced in [3] and developed in the Appendix of the current
paper. Our approach is to start with a hybrid preference
model — a model of bidder preferences that lies between
quasilinear utilities and value maximizing preferences — and
set prices so that bidders of the chosen type would be truth-
ful. We propose two di↵erent hybrids.

Our first hybrid model adds a return on investment (ROI)
constraint of ↵ to existing quasilinear utilities. We refer the
reader to the Appendix for details, but the prices are as
follows:

Definition 3. The ROI-constrained truthful price pi[j]
when i gets allocation xi[j] is computed by the following
recursive formula: pi[0] = 0, and for all j > 0,

pi[j] = min

✓
⌧i[j],

x̂i[j � 1]pi[j � 1] + (x̂i[j]� x̂i[j � 1])(↵+ 1)⌧i[j]

x̂i[j]

◆

(6)
6Observing this property of GSP prices is not new, but [3]
is the first to give a solid foundation for why this property
is significant.

VCG GSP

ECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM Cost

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

ECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM CostECPM Cost

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d0.00

0.05

0.10

0.15

$0.00 $0.25 $0.50 $0.75 $1.00$0.00 $0.25 $0.50 $0.75 $1.00
Advertiser's bid

Pr
ob

ab
ilit

y
of

 c
lic

k
on

 a
dv

er
tis

er
's

ad
Allocation Curve for Advertiser

Figure 5: An illustration of “overcharging” un-
der generalized GSP payments. The red and blue
shaded areas represent the prices charged for the
red and blue bids respectively, under VCG (left)
and generalized GSP (right) prices. Note that the
small increase in click probability results in a small
change in the VCG price but a large increase in the
generalized GSP price.

This formula has a natural interpretation: a bidder is
charged the lesser of the GSP price (⌧i[j]) and the price
one computes starting with xi[j � 1] at price pi[j � 1] and
assuming a marginal cost-per-click of (↵+1)⌧i[j] for the ex-
tra xi[j] � xi[j � 1] expected clicks. This is illustrated in
Figure 6.

The second type of preferences we propose is continuous
and assumes that bidders optimize a utility function of the
form ui = v↵+1

i � p↵+1
i . Again, we refer the reader to the

Appendix for details:

Definition 4. The ↵-hybrid truthful price pi[j] is given by
the following formula:

pi[j] =
1

x̂i[j]

jX

l=1

(⌧i[l]x̂i[l])
↵+1 � (⌧i[l]x̂i[l � 1])↵+1

! 1
↵+1

(7)

At ↵ = 0, both models describe traditional VCG prices
(truthful prices for profit maximizers); as ↵ ! 1, both
models converge to GSP prices (truthful for value maxi-
mizers). We choose a hybrid model to mimic GSP while
curtailing extremely high marginal prices.

4. RESULTS

4.1 Allocation accuracy
The first results we present regard how well our heuristic

ad allocation algorithm approximates the optimal solution.7

We report results on a random selection of 100,000 auction
instances drawn from Yahoo’s Gemini search platform for

7The optimal allocation, given any set of ad candidates, can
be solved by a variety of methods including integer program-
ming; it is easy for us to compute statistics about an optimal
algorithm o✏ine, despite it not being suitable for online use
due to the severe runtime constraints of our domain.

GSP Cost Bound

ECPM CostECPM CostECPM CostECPM Cost

Bi
d

Bi
d

Bi
d

Bi
d

ECPM CostECPM CostECPM CostECPM CostECPM CostECPM Cost

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d

Bi
d0.00

0.05

0.10

0.15

$0.00 $0.25 $0.50 $0.75 $1.00$0.00 $0.25 $0.50 $0.75 $1.00
Advertiser's bid

Pr
ob

ab
ilit

y
of

 c
lic

k
on

 a
dv

er
tis

er
's

ad

Allocation Curve for Advertiser

Figure 6: An illustration of pricing for ROI-
constrained bidders. Pricing for bidders with an
ROI constraint charges the smaller of two quantities:
the GSP price (left) and a maximum-marginal-cost-
per-click increase over the previous price (right).

Desktop devices. An “instance” consists of a set of candi-
date ads and all relevant accompanying information (bids,
clickability predictions, size, decorations, etc.). We ran the
algorithm with a variety of di↵erent maximum ad cardinal-
ity limits (ADLIM), in each case applying a maximum number
of ad lines (H) equal to 18.

ADLIM 2 3 4 5
E�ciency rate 0.9999 0.9998 0.9978 0.9957
Optimality rate 0.999 0.993 0.877 0.806

Table 1: Performance comparison of our heuristic
algorithm against the optimal algorithm. The e�-

ciency rate is the average ratio of our algorithm’s
e�ciency to that of the optimal algorithm; the op-

timality rate is the percentage of instances on which
our heuristic returned a globally optimal solution
(i.e., achieved e�ciency rate of 1).

As Table 1 indicates, when a maximum of two ads may
be shown, the heuristic misses the optimal allocation in less
than one out of every 10,000 instances. When three ads
may be shown, this goes down to about one out of every
150 instances. As the ADLIM increases the heuristic diverges
from the optimal solution in more and more cases; however,
when it does diverge, it still finds a solution that is negligibly
worse than the optimal one. Even for an ADLIM of 5 (which is
the upper limit of what is currently seen on any of the major
search platforms), our heuristic algorithm obtains more than
99.5% of the optimal e�ciency on average.

4.2 Pricing accuracy
Completely apart from the potential suboptimality of the

allocation that our algorithm computes, there is approxima-
tion in the prices we compute. As discussed, to precisely
compute prices (say, according to Eq. (6) or Eq. (7)) one
needs to compute the allocation curve for the bidder, from
which the price can be quickly deduced. One can do so
in a brute-force manner, panning across the space of pos-
sible bids and observing how the bidder’s allocation (and

predicted number of clicks) changes, holding all other bids
constant. Since there are only a finite number of alloca-
tions, one can do better than this by using binary search to
determine the “break points” in the allocation curve — i.e.,
the set of distinct flat regions it is constituted by. But even
this will be too computationally costly to use in real-time.
Hence our online method for computing allocation curves,
described in Section 3.

Determining those prices is computationally feasible, but
are the prices any good? Yes. Figure 7 illustrates the accu-
racy of our “approximate prices” by comparing them to the
exact prices, computed o✏ine via binary search.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.50

500

1000

1500

2000

2500

3000

3500

4000

4500

COMPUTED_PRICE / EXACT_PRICE

mean: 0.996, median: 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ABS(1 − COMPUTED_PRICE / EXACT_PRICE)

cdf

Figure 7: The distribution of the ratio of our com-
puted prices to exact prices (top), and the cdf of the
distance between our estimate and the exact price
(bottom).

The top illustration in Figure 7 is a histogram of the ra-
tios of approximated price to exact price. The giant peak
at 1 indicates that we get the price precisely right a signif-
icant percentage of the time. There is a large volume just
to the right of peak, where we slightly overestimate prices,
and there is a fairly long and light tail below 1. The bot-
tom illustration conveys the cumulative distribution of the
absolute-value distance of our approximate prices from the
exact prices. We’re within 5% of the exact price about 85%
of the time, and we’re within 15% almost 95% of the time.

4.3 Online bucket results
In live bucket tests our algorithm substantially improves

over its predecessor, at least along some metrics, packing

more ads into less space. Selected results from one test are
given in Table 2: the test packed > 10% more ads into
< 90% of the lines. Meanwhile, it increased advertiser value
by 8% (assuming bids are truthful) with clicks remaining
nearly neutral. Revenue was also neutral, but this metric
has little meaning in a small bucket test when the auction
rules change.

Metric Test vs. Control
Total Ads +11%
Total Lines �11%
Value per Search +8%
Revenue per Search neutral
Click Yield �1%

Table 2: Selected results from a bucket test on Ya-
hoo’s desktop search platform. The test ran for 5
days on 1.5% of tra�c.

5. DISCUSSION
In this paper we provided a formal introduction of the rich

ads problem for sponsored search, and described our recent
e↵orts to address it. The major part of the paper focused
on presenting the details of our engineered solution. We de-
scribed a local search based heuristic method that achieves
performance that is practically identical to that of an opti-
mal algorithm, while meeting the tight runtime constraints
of the sponsored search domain. We described a method
that couples the algorithmic determination of a near-optimal
allocation with allocation-curve construction, which allows
us to quickly compute prices without repeating work, mak-
ing the whole system runtime feasible and easily adaptable
to future developments.

The claim about our heuristic optimization algorithm be-
ing near-optimal is an empirical observation based on the
types of decorations available today and the ad real-estate
constraint in place. Similarly we have empirically estab-
lished the close approximation of our allocation curve gen-
eration method. In our future work, we plan to explore ex-
act optimization algorithms that are guaranteed to produce
allocation curves with approximation bounds.

Online experiments on a fraction of Yahoo search tra�c
comparing the performance of our algorithm with the stan-
dard GSP algorithm on metrics such as revenue, click yield,
ad real estate footprint, and user response indicate that our
new approach yields improved outcomes in a “win-win-win”
fashion, achieving gains in advertiser value and revenue to
the search platform, while at the same time reducing the
overall ad footprint, which is presumably in the user’s best
interest. One thing we observe is that, for many ads, after
a certain point the click-through-rate (CTR) per line has
diminishing returns and thus smaller ads have a higher av-
erage click-through-rate per line. Our algorithm therefore
often favors smaller ad variants over larger ones, packing
more ads for the same total number of lines on a page.

After a version of our algorithm is launched into full-scale
production we expect that advertisers will adjust their bids
in an e↵ort to have their preferred ad variant appear. While
in our present version we assume that we can drop decora-
tions willy-nilly to vary the size of the ad, advertiser pref-
erences over their ad variants may present practical con-

straints. It may be necessary to allow advertisers to bid
separately for each ad variant, so that their preferences can
be properly expressed. This would raise a number of chal-
lenges, among other things forcing us to modify how we
generate allocation curves for pricing. It is an area that we
will be studying further.

6. REFERENCES
[1] Yoram Bachrach, Sofia Ceppi, Ian A. Kash, Peter Key,

and Mohammad Reza Khani. Mechanism design for
mixed ads. In 11th Workshop on Sponsored Search
Auctions, 2015.

[2] Yoram Bachrach, Sofia Ceppi, Ian A. Kash, Peter Key,
and David Kurokawa. Optimising trade-o↵s among
stakeholders in ad auctions. In Proceedings of the 15th
ACM Conference on Economics and Computation
(EC’14), pages 75–92, 2014.

[3] Ruggiero Cavallo, Prabhakar Krishnamurthy, and
Christopher A. Wilkens. On the truthfulness of GSP.
In 11th Workshop on Sponsored Search Auctions, 2015.

[4] Ruggiero Cavallo and Christopher A. Wilkens. GSP
with general independent click-through-rates. In
Proceedings of the 10th International Conference on
Web and Internet Economics (WINE’14), pages
400–416, 2014.

[5] Xiaotie Deng, Yang Sun, Ming Yin, and Yunhong
Zhou. Mechanism design for multi-slot ads auction in
sponsored search markets. In Proceedings of the 4th
International Workshop on Frontiers in Algorithmics
(FAW’10), pages 11–22, Berlin, Heidelberg, 2010.

[6] Paul Dütting, Felix Fischer, and David C. Parkes.
Truthful outcomes from non-truthful position
auctions. In Proceedings of the 17th ACM Conference
on Economics and Computation (EC’16), pages
813–813, New York, NY, USA, 2016. ACM.

[7] Benjamin Edelman and Michael Ostrovsky. Strategic
bidder behavior in sponsored search auctions. Decision
Support Systems, 43(1):192–198, February 2007.

[8] Benjamin Edelman, Michael Ostrovsky, and Michael
Schwarz. Internet advertising and the generalized
second-price auction: Selling billions of dollars worth
of keywords. American Economic Review,
97(1):242–259, 2007.

[9] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav
Shoham. Taming the computational complexity of
combinatorial auctions: Optimal and approximate
approaches. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI’99),
pages 548–553, 1999.

[10] Oktay Günlük, Lászlo Ladányi, and Sven De Vries. A
branch-and-price algorithm and new test problems for
spectrum auctions. Management Science,
51(3):391–406, 2005.

[11] Darrell Hoy, Kamal Jain, and Christopher A. Wilkens.
A dynamic axiomatic approach to first-price auctions.
In Proceedings of the Fourteenth ACM Conference on
Electronic Commerce (EC’13), pages 583–584, New
York, NY, USA, 2013. ACM.

[12] Benjamin Lubin, Adam I. Juda, Ruggiero Cavallo,
Sébastien Lahaie, Je↵rey Shneidman, and David C.
Parkes. ICE: An expressive iterative combinatorial

exchange. Journal of Artificial Intelligence Research,
33(1):33–77, 2008.

[13] Paul Milgrom. Simplified mechanisms with an
application to sponsored-search auctions. Games and
Economic Behavior, 70(1):62–70, 2010.

[14] Hal R. Varian. Position auctions. International
Journal of Industrial Organization, 25:1163–1178,
2007.

[15] Hal R. Varian and Christopher Harris. The VCG
auction in theory and practice. American Economic
Review, 104(5):442–45, 2014.

[16] Christopher A. Wilkens, Ruggiero Cavallo, and Rad
Niazadeh. Mechanism design for value maximizers.
CoRR, abs/1607.04362, 2016.

[17] Christopher A. Wilkens, Ruggiero Cavallo, and Rad
Niazadeh. GSP — the cinderella of mechanism design.
In Proceedings of the 26th International Conference on
World Wide Web (WWW’17), 2017.

APPENDIX
A. TRUTHFUL AUCTIONS FOR

GENERAL PREFERENCES
In Section 3 we proposed two di↵erent pricing schemes

that hybridize between VCG and GSP pricing. Each scheme
is derived by hypothesizing a family of bidder preferences for
which VCG is truthful at one extreme and GSP is truthful
at another. To define truthful prices for these preferences
we introduce indi↵erence point pricing. Throughout this
section we focus on the perspective of a single bidder i and
therefore drop its subscripts.

Definition 5. (Indi↵erence Point Auction) Let v 2 <+ de-
note the type of a bidder and u(x, v, p) denote its utility for
getting x expected clicks at price-per-click p. The indif-
ference point prices p[j] for a monotone discrete allocation
curve {(⌧, x̂)} are computed recursively for a continuous util-
ity function u by setting p[0] = 0 and then choosing p[j] to
satisfy:

u(x̂[j], ⌧ [j], p[j]) = u(x̂[j � 1], ⌧ [j], p[j � 1])

I.e., a bidder with type ⌧ [j] is indi↵erent between getting
x̂[j�1] clicks at price p[j�1] and getting x̂[j] clicks at price
p[j]. More generally, when u is discontinuous, we take:

pi = inf {⇡ |u(x̂[j], ⌧ [j], z) u(x̂[j � 1], ⌧ [j], p[j � 1])} .

It is easy to verify that these prices coincide with Myer-
son’s formula when u represents traditional quasilinear util-
ities.

We will prove a statement about truthfulness later, but for
the purposes of our paper, we use the following observations
that follow by examining the indi↵erence points of a bidder:

Observation 3. Suppose u(x, v, p) = (xv)↵+1 � (xp)↵+1

for ↵ � 0. Then the indi↵erence point prices will be:

p[j] =
1

x̂[j]

jX

l=1

(x̂[l]⌧ [l])↵+1 � (x̂[l � 1]⌧ [l])↵+1

! 1
↵+1

Proof. Indi↵erence of a bidder with type ⌧ [j] implies:

(x̂[j]⌧ [j])↵+1 � (x̂[j]p[j])↵+1

= (x̂[j � 1]⌧ [j])↵+1 � (x̂[j � 1]p[j � 1])↵+1

And thus,

(x̂[j]p[j])↵+1

= (x̂[j]⌧ [j])↵+1 � (x̂[j � 1]⌧ [j])↵+1 + (x̂[j � 1]p[j � 1])↵+1

=
jX

l=1

(x̂[l]⌧ [l])↵+1 � (x̂[l � 1]⌧ [l])↵+1,

from which the observation follows.

Observation 4. Suppose that a bidder requires an ROI
of at least ↵, but that her utilities are otherwise quasilinear.
Then if v represents what she is willing to pay (so (1 + ↵)v
is her true value), then we can write a utility function:

u(x, v, p) =

(
(1 + ↵)xv � xp if v � p

xv � xp otherwise.

Indi↵erence point prices are given by the recursion:

p[j] = min

✓
⌧ [j],

x̂[j � 1]p[j � 1] + (x̂[j]� x̂[j � 1])(1 + ↵)⌧ [j]
x̂[j]

◆

Proof. Consider the “indi↵erence” of a bidder with type
⌧ [j]. Suppose we are given p[j � 1]. If we wishfully suppose
that ⌧ [j] � p[j], then indi↵erence implies

x̂[j]((1 + ↵)⌧ [j]� p[j]) = x̂[j � 1]((1 + ↵)⌧ [j]� p[j � 1]),

and thus

p[j] =
x̂[j � 1]p[j � 1] + (x̂[j]� x̂[j � 1])(1 + ↵)⌧ [j]

x̂[j]
,

which is the second term in the min.
Suppose that our wish was incorrect, i.e., suppose

z =
x̂[j � 1]p[j � 1] + (x̂[j]� x̂[j � 1])(1 + ↵)⌧ [j]

x̂[j]
> ⌧ [j] .

Then for any p[j] ⌧ [j] it must be that u(x[j], ⌧ [j], p[j]) >
u(x[j � 1], ⌧ [j], p[j � 1]). On the other hand, for any p[j] >
⌧ [j] we have u(x[j], ⌧ [j], p[j]) < 0 u(x[j�1], ⌧ [j], p[j�1]).
This implies that

p[j] = inf {⇡ |u(x̂[j], ⌧ [j], z) u(x̂[j � 1], ⌧ [j], p[j � 1])}
= ⌧ [j]

Our theorem about the truthfulness of indi↵erence point
pricing uses standard techniques to show that truthfulness
is almost always a best response:

Theorem 1. Let v 2 <+ denote the type of a bidder and
u(x, v, p) denote his utility for getting x expected clicks at
price-per-click p satisfying the following properties:

1. u is strictly increasing in x and v and strictly decreasing
in p.

2. u(x+dx, v+dv, p+dp)�u(x, v+dv, p) > u(x+dx, v, p+
dp)� u(x, v, p) where dx, dv, dp > 0.

For the indi↵erence point auction, truthful bidding is always
a best response if u is continuous or v 6= ⌧ [j] for all j.

Proof. Suppose that a bidder who reports v gets x(v) =
x̂[j]. First we argue that a bidder of type v never wants
to report b < v. Fix a bid b < v that results in allocation
x(b) = x̂[j0] < x̂[j] = x(v) (note j0 < j by construction). Let
b0 v be such that x(b0) = x̂[j0 +1]. Then by monotonicity
of u and the definition of p we know that a bidder of type
b0 does not prefer to lie and say b:

u(x̂[j0 + 1], b0, p[j0 + 1])� u(x̂[j0], b0, p[j0]) > 0

Then, since v � b0, we can use the conditions of the theorem
to conclude that

u(x̂[j0 + 1], v, p[j0 + 1])� u(x̂[j0], v, p[j0])

� u(x̂[j0 + 1], b0, p[j0 + 1])� u(x̂[j0], b0, p[j0])

> 0,

and thus a bidder of type v would not lie and say b because
a lie to b0 (yielding x̂[j0+1] clicks at p[j0+1]) would generate
more utility.

Second, we argue that a bidder does not want to report
b > v where x(b) = x̂[j0] > x̂[j] = x(v). Let b0 � v be
such that x(b0) = x̂[j0 � 1]. Suppose that we pick b0 so that
b0 6= ⌧ [j0]. We know by definition of p that a bidder of type
b0 does not prefer to lie and say b:

u(x̂[j0], b0, p[j0])� u(x̂[j0 � 1], b0, p[j0 � 1]) < 0

And, therefore, by the conditions of the theorem:

u(x̂[j0], v, p[j0])� u(x̂[j0 � 1], v, p[j0 � 1])

 u(x̂[j0], b0, p[j0])� u(x̂[j0 � 1], b0, p[j0 � 1])

< 0

So a bidder of type v would not lie and say b because a
lie to b0 would generate more utility. In the case where
the only valid b0 has b0 = ⌧ [j0 � 1] we can conclude that
b0 = v = ⌧ [j0 � 1] and so the theorem need not hold (though
it is straightforward to argue that it still holds if u is con-
tinuous).

Corollary 1. Indi↵erence point pricing is truthful “al-
most everywhere” (see [17]), i.e., as long as v 6= ⌧ [j] for all
j. This can be strengthened to ordinary truthfulness when u
is continuous.

