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Abstract

In a pandemic people naturally modulate their social interactions,
weighing rewards against risks, which are at least partly determined
by the prevailing contact level of the broader community. If all are
optimizing with respect to the decisions of others, what happens in
equilibrium? In a highly simplified model, I highlight the collective
action problem and find that: the lowest-contact equilibrium is always
the best from a social welfare perspective, but still involves contact be-
yond the optimal rate; a small increase in viral transmissibility can do
dramatically disproportionate damage to equilibrium welfare; and, on
the other hand, facilitating a marginally greater social distancing op-
tion (think of curbside pickup, work from home, etc.) can sometimes
eliminate the worst equilibria. The same is true for certain manipu-
lative interventions, which raises questions about the communication
strategies public health authorities may be drawn to engage in pursuit
of social welfare.

1 Introduction

To social distance, or not to social distance? In a pandemic it becomes a
pervasive question, assuming a society free enough to let it arise. Should you
go to the barber, or trim your own hair; go out for dinner, or cook at home;
catch up with a friend in person, or over the phone? These choices involve
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weighing benefit against cost, reward against risk; and the risk side of the
equation is strongly impacted by the background decisions of the broader
population.

Navigating this terrain involves game theoretic reasoning, with individual
strategies optimized and tuned against the choices of others. Laxity of the
broader society may provide more reason for you to be cautious, and inversely
a highly cautious society can provide more scope for you to be lax without
harm. Or does that logic flip in certain cases? What outcomes obtain? In
other words, what is the social distancing equilibrium?

The unmeasurable complexities of the real world have confounded myr-
iad attempts to predict the current pandemic’s course, and this paper should
not be confused for any such effort. Rather, I adopt a purposefully simpli-
fied model and focus on an under-appreciated dimension, the strategic one,
revealing a number of salient patterns which I hope can beneficially enhance
reasoning in this domain.

1.1 Main questions and answers

The central contribution is to model how equilibrium distancing levels might:
1) relate to social optima, and 2) change as a function of key variables (i.e.,
costs of infection, transmissibility rate, maximum amount of distancing that
is possible, etc.).

Regarding social optima, there will be a free-riding problem in some form
— when an individual decides hows much to socially distance, he is trading
off a good (value from contacts) against a bad (possibility of infection); he
receives the entire good himself,1 but only experiences part of the bad, since
his becoming infected may have serious negative ramifications on others in
addition to the obvious personal cost. Indeed, I find that under my model,
aside from a corner case:

Every equilibrium involves more social contact than occurs in the
social optimum (Proposition 1).

The second finding about welfare is perhaps slightly less intuitive:

1This is one of the over-simplifications of the model I propose, since social interaction
is multi-way and in reality often brings some value to all sides. If you’re riding the bus or
getting groceries, you may bring no additional value to other passengers or shoppers; but
if you’re performing in a band, it’s a different story.
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The equilibrium generating highest social welfare is always the one
that involves the least social contact (Proposition 2).

A revealing pattern, illustrated in Figure 1, is sometimes seen in individ-
ual best-response as a function of the social distancing decisions of others,
with unmitigated contact optimal at both extremes (i.e., when the broader
society is maximally distanced and when it is minimally distanced), and, in
the middle, optimality of progressively greater distancing in response to di-
minishing forbearance in the broader society. Unfortunately, in such cases
there is an unrestricted contact (“give up on distancing”) equilibrium that
is often very bad from a welfare perspective; one focus of the paper will be
to understand conditions that can yield this outcome.

best-response

Figure 1: An illustrative pattern of best-response to others’ distancing deci-
sions. Unrestricted contact (zero social distancing) is one equilibrium here.

With respect to the second class of questions, regarding how outcomes
change in response to input changes, I focus on what an increase in viral
transmissibility portends, and also on the types of interventions we might
expect from public health authorities. I find that, though in many cases
increased transmissibility will just smoothly increase the equilibrium amount
of social distancing, also:

An increase in transmissibility can abruptly introduce zero social
distancing as an equilibrium; and thus a small increase in trans-
missibility can do vastly disproportionate harm to social welfare
(Claim 1).

3



Regarding possible interventions of a social planner, we observe that in
the current pandemic key authorities have, at least at times, exhibited a
disposition to using their communication platforms as ways to nudge and
optimize the public’s behavior, rather than merely as channels through which
to forthrightly inform.

For instance, when asked in a congressional hearing [10] about his fail-
ure to recommend mask-wearing amongst the general public throughout the
early stage of the COVID-19 pandemic,2 Dr. Anthony Fauci—the de facto
spokesman for US public health policy at the time—explained that “there
was a paucity of equipment that our heath care providers needed.... Now that
we have enough, we recommend [widespread mask wearing].” In an inter-
view with the New York Times [9], Fauci also described a strategic approach
to communicating thresholds for herd immunity — tuning his estimates to
how he expected the public to respond, rather than just straightforwardly
conveying current expert opinion.3

Such examples motivate an exploration of potential informational “op-
timizations” (manipulations, really) that a welfare-minded authority might
engage. I find:

A zero social distancing equilibrium can always be eliminated by
sufficiently elevating the perceived relative “cost” of infection as
compared to the value of social contact (Theorem 3). In some
cases a tiny movement along these lines will change the equilib-
rium outcome from terrible to nearly optimal.

This should raise an alarm about some of the temptations authorities
might face, focused on optimizing a set of key metrics, without good visibility
into the specific and often dire tradeoffs faced by individuals (“the best-laid
schemes o’ mice an’ men”).

Finally, there may be forthright interventions that also have a remarkably
salutary effect on social welfare. In particular:

2“There’s no reason to be walking around with a mask,” Fauci told 60 Minutes in an
interview that aired March 8, 2020 (https://www.cbsnews.com/news/preventing-coro
navirus-facemask-60-minutes-2020-03-08).

3Quoting from the New York Times: “When polls said only about half of all Americans
would take a vaccine, I was saying herd immunity would take 70 to 75 percent,” Dr. Fauci
said. “Then, when newer surveys said 60 percent or more would take it, I thought, ‘I can
nudge this up a bit,’ so I went to 80, 85.”
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A disastrous zero social distancing equilibrium can sometimes be
eliminated by marginally increasing the level of social distancing
that is possible (Theorem 4).

Intuitively, if the greatest possible social distancing level is not distant
enough to make it worth the cost of forgoing valuable contact, then the
only equilibrium may be zero distancing rather than the maximum or some
intermediate level. Making it feasible to engage in lower contact levels—
think of grocery delivery, curbside pickup, work from home, etc.—can create
a far better equilibrium.

1.2 Limitations

I adopt a highly simplified model with many assumptions that deviate starkly
from reality. I assume a uniform population and analyze symmetric outcomes,
whereas in reality there are vast differences in: cost of infection across in-
dividuals (e.g., old versus young), ability to social distance (e.g., essential
on-site worker versus home worker), risk imposed by one potential contact
versus another (e.g., close co-worker versus clerk), etc.

I assume that agents perfectly optimize their utilities, while in reality
many are uninformed and all are vulnerable to error.

I assume agents are selfish, while in reality, one hopes, most are highly
motivated to protect the well-being of others.

I ignore the fact that the space of social distancing options available across
agents may be constrained interdependently.4

Also, I model optimization with respect to any given “snapshot” of the
world, whereas in reality things are constantly in flux (and agents know this)
— new vaccines on the horizon, new viral strains evolving, etc. I cannot
report on how robust my results would be, qualitatively, to de-simplification
along these dimensions, if such is possible.

Finally, while motivated by the COVID-19 pandemic, my analysis does
not make any attempt to find a set of model parameters that approximates
the current situation, or any specific historical situation for that matter.
Instead I seek general insights, and derive findings about what interesting
things are possible across the space of potential scenarios.

4E.g., I assume “no social distancing” is an option even when all others are maximally
distancing, while in reality there is no way of maintaining the same level of social contact
when, say, the subways are only 30% as full as before. (This is related to footnote 1.)
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1.3 Related work

A fundamental premise underlying this work is that people will naturally
alter their behavior, distancing from others, when faced with a dangerous
contagion. Practically anyone alive during the current global pandemic has
seen this first-hand, but studies such as [1] catalog evidence that even in a
far more subtle case such as the 2009 H1N1 flu, Americans spontaneously
social distanced in a way that impacted the epidemic.5

Other work makes the case for doing so. Ferguson et al. [7] estimated
that in the “unmitigated” case, COVID-19 would lead to over 2 million US
deaths by the end of Summer 2020, with perhaps half avoidable through
social distancing and targeted isolation measures.6 The quantitative predic-
tions of this study and its derivatives7 are not easy to evaluate, since a mix
of mitigation and more stringent suppression interventions were ultimately
adopted, but they at least provide an indication of how critical distancing is
seen to be by those most prominent in the field.

With respect to game theoretic modeling, prior work contextualizes a
social distancing “game” within the canonical SIR (susceptible, infected, re-
covered) approach to epidemiological modeling. Reluga [14] models how be-
haviors might change over time as, say, a vaccination horizon draws nearer.
Chen et al. [4] models the equilibrium distancing rate as a function of how
the amount of social contact relates to the number of people “out in public.”
Like some others, Farboodi et al. [5] compares outcomes under a laissez-
faire policy and an optimal policy that imposes distancing constraints, but is
distinguished by its specific application to the COVID-19 crisis. Fenichel [6]
emphasizes the importance of discriminating amongst different health classes
when formulating distancing policies, and considers agents with value that
is concave in their chosen contact rate (as do I). Finally, Toxvaerd [16] con-
siders settings with a continuum of agents, which simplifies the equilibrium
analysis (some related assumptions I make in this work play a similar role,
though we get qualitatively different results). Chang [3] provides a broad
review of work in this area.

5Interestingly, the authors argue that the under-appreciation of voluntary distancing
has in the past lead to excessively strict formal measures.

6The computer simulation code underlying this report’s modeling and predictions has
since received intense criticism from some quarters; see [15].

7Using Ferguson et al.’s simulation model, Greenstone and Nigam [8] estimated that
“3-4 months of moderate distancing beginning in late March 2020 would save 1.7 million
lives in the US by October 1.”
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I do something quite different in this paper, bypassing the SIR model
(which adds a lot of complexity while, at least in this context, delivering
questionable predictive value), instead collapsing the time dimension and
simply including the most game-theoretically relevant datum—namely, how
individual infection risk varies with the distancing level of others—as a direct
input the modeler can specify. This yields findings that are highly intelligible,
since they directly describe relations of fundamental and quasi-observable
attributes of the problem.

Finally, at the end of the paper I discuss manipulations a welfare-minded
planner might employ to try to mitigate the free-rider dynamic at the core
of collective action problems; this relates very directly to [2].

2 Model

A large population of agents simultaneously decide on individual contact
levels, jointly determining the utility experienced by each, which is a linear
combination of value from the social interaction and cost of infection risk.

I will often present the scenario from the perspective of an individual
agent i, denoting his chosen contact level as ci ∈ [c, 1] and that of the others
as co ∈ [c, 1] (for a c to be described below). Reducing the contact level of
“others” to a scalar is a simplification that glosses over any strategic dis-
tinctions between, say, a scenario where half the population locks down and
half is unconstrained, versus one where everyone distances at some interme-
diate rate; in this model, agents optimize with respect to a thus-generalized
measure of societal contact. I will formalize this further in a moment.

Each agent has m potential contacts, and a choice of ci means he will
interact with cim of them. c > 0 captures the fact that total isolation is
impossible (e.g., c = 1

m
would indicate that all must make at least 1 contact).

Due to the dynamics of contagion, the probability that a random contact
is infected is increasing in the contact rate of the population. Thus i’s prob-
ability of becoming infected from a single contact is an increasing function
f of co.

8 I assume only that this function f is continuous, increasing, and

8One intuitive form for f would be f(co) = β[r+(1− r)cσo ] with parameters β ∈ (0, 1),
r ∈ (0, 1), and σ ≥ 1 representing likelihood of transmission given contact with an infected
person, infection base rate in the population, and a slope-control, respectively. We will
return to a specific form like this for demonstration purposes later in the paper, but our
results can be stated generally.
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has range ∈ [0, 1] for all co ∈ [c, 1]. I will use δ(co) to denote an uninfected
agent’s probability of remaining uninfected given a single contact interaction;
i.e., δ(co) is shorthand for 1− f(co). Then i’s total probability of becoming
infected given ci (i.e., given cim contacts), equals 1 − δ(co)

cim.9 Note that δ
is continuous, decreasing, and has range ∈ [0, 1] for all co ∈ [c, 1].

Now returning to co, it can be interpreted as whatever aggregate measure
of societal distancing determines the single-contact non-infection probability,
δ, as perceived by agents — it could be a statistic like the mean or mode
over individual contact levels, or something else; there is no need to pin it
down. Formally, I assume only that all co values in [c, 1] are realizable (i.e.,
obtain for some set of individual choices), and in the case that every i has
chosen ci = x, for arbitrary x ∈ [c, 1], that co = x for each i.

On the other side of the ledger is the value i gets from interaction, which
exhibits diminishing marginal returns as contacts are added.10 I represent
this as α(1 − γcim), where γ ∈ (0, 1) is a parameter controlling the rate of
exponential decay (e.g., if γ = 0.75, each additional contact is three quarters
as valuable as the previous one), and α > 0 is a way of scaling value against
the cost of infection.

Putting this together and subtracting cost (infection probability) from
value yields the following utility function:

ui(ci, co) =
[
α(1− γcim)

]
−
[
1− δ(co)

cim
]

(1)

This implicitly normalizes things to a “cost of infection” that equals 1, with
the relative “contact value” scalable via α without changing the rate of decay.

In sum, ci and co are variables that agents jointly (but individually)
set, while scale parameter α, value discount rate γ, minimal contact rate

9This expression for infection probability makes sense regardless of the time-scale one
envisions for “a contact.” Your (perhaps repeated) interaction with a single contact, say,
the grocer, brings a probability of infection that will be distinct depending on whether
the time-frame being considered is 1 day or 1 month, but either choice can be the basis
for specifying input δ(co), and in either case the additional infection probability—over the
same time-frame—for adding a second contact is: [1− δ(co)

2]− [1− δ(co)].
10Contacts have varying levels of importance and distancing will naturally eliminate the

least important first. Contact with the grocer is critical for getting food; then perhaps
extended family contacts, while not strictly necessary and thus marginally less “valuable,”
are certainly still quite important. Then, perhaps the dentist, the butcher, and so on and
so forth until we come to far less critical contact with strangers at the bottom.
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c, contact-pool size m, and the single-contact non-infection probability func-
tion δ : [c, 1] → [0, 1], are inputs included as variables to capture a breadth
of scenarios. An example is depicted in Figure 2.
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Figure 2: For parameters m = 50, α = 1, γ = 0.9, and δ(co) = 1 − 0.5c3o,
value and costs (a) and utility (b) for agent i are illustrated as a function
of his chosen contact level (ci, on the x-axes) and that chosen by others (co,
distinguished by color). Plot lines start at the minimal feasible contact level,
c = 0.02.

3 Best-response

We begin analysis in this model by mapping out the optimal contact level
choices for a given agent i, conditional on whatever contact level co is oper-
ative in the broader society.

The function below, which we will see relates to the first-order conditions
for utility maximization, plays an important role in what follows. Define:

χ(co) =
ln
(

α ln(γ)
ln(δ(co))

)
m ln

(
δ(co)
γ

) (2)

There are 3 cases to address, distinguished by how the single-contact non-
infection probability (δ) relates to the rate at which marginal value decays
as contacts increase (γ). The best-response is either χ(co), or it lies at one
of the extremes (c or 1).
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Lemma 1. Given co, i’s best-responses are as follows:

• If δ(co) > γ, i has a unique best-response: min
{
1,max

{
c, χ(co)

}}
.

• If δ(co) < γ, i has a unique best-response c if α(γcm − γm) < δ(co)
cm −

δ(co)
m, a unique best-response 1 if α(γcm−γm) > δ(co)

cm−δ(co)
m, and

two best-responses c and 1 otherwise.

• If δ(co) = γ: i has a unique best-response c if α < 1, i has a unique
best-response 1 if α > 1, and every ci ∈ [c, 1] is a best-response if α = 1.

Proof. A best-response for i to co is a global optimum of ui(ci, co), fixing co. In
the corner case where co = δ−1(γ), i.e., δ(co) = γ, ui(ci, co) = (α−1)(1−γci),
and ∂

∂ci
ui(ci, co) = (1− α) ln(γ)γci. If α < 1 this is negative everywhere, and

so ci = c is optimal; if α > 1 this is positive everywhere, and so ci = 1 is
optimal; and if α = 1 this is 0 everywhere, and so every ci is optimal.

For the rest of the proof, we assume co �= δ−1(γ). We have:

∂

∂ci
ui(ci, co) = m ln(δ(co))δ(co)

cim − αm ln(γ)γcim

We are interested in the sign of this quantity, and whether and where the
sign changes. ∂

∂ci
ui(ci, co) > 0 if and only if ln(δ(co))δ(co)

cim > α ln(γ)γcim,

i.e., noting that ln(δ(co)) < 0, ∂
∂ci

ui(ci, co) > 0 if and only if:

(
δ(co)

γ

)cim

<
α ln(γ)

ln(δ(co))
(3)

χ(co), defined above in Eq. (2), is precisely the ci value that equalizes both
sides of this inequality.

Now we need to distinguish two sets of cases, depending on whether or
not δ(co) > γ. First assume it is so, i.e., that co < δ−1(γ). Eq. (3) will be
satisfied, and thus ∂

∂ci
ui(ci, co) will be positive, if and only if ci < χ(co). That

means ui will be increasing for all ci < χ(co) and decreasing for all ci > χ(co),
and thus the best-response is c if χ(co) ≤ c, χ(co) if χ(co) ∈ [c, 1], and 1 if
χ(co) > 1. In other words, the best-response is min{1,max{c, χ(co)}}.

Now assume δ(co) < γ, i.e., co > δ−1(γ). This time (3) will be satisfied,
and ∂

∂ci
ui(ci, co) will be positive, if and only if ci > χ(co). That means ui

will be decreasing for all ci < χ(co) and increasing for all ci > χ(co). The
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best-response must therefore lie at an extreme — it is c if α(γcm − γm) <
δ(co)

cm − δ(co)
m, 1 if α(γcm − γm) > δ(co)

cm − δ(co)
m, and both extremes

are best-responses otherwise (we know that the first case must obtain if
χ(co) ≥ 1).

Corollary 1. For every co ∈ [c, 1], for all possible parameter settings with
either δ(co) �= γ or α �= 1, i’s best-response ci is either c, 1, or χ(co) =

ln
( α ln(γ)
ln(δ(co))

)
/
[
m ln

( δ(co)
γ

)]
. The best-response is unique except when δ(co) < γ

and α(γm − γcm) = δ(co)
m − δ(co)

cm, in which case c and 1 are both best-
responses, or when δ(co) = γ and α = 1, in which case all ci are best-
responses.

Thus best-response is essentially a function from co to ci, and we can map
out its form. Figure 3 illustrates one example, an intuitive case where, when
others’ contact levels are minimal and infection risk is therefore relatively
low, no distancing (ci = 1) is an optimal response; as others’ contact levels
increase, some distancing becomes optimal, at an increasing level as co rises,
until eventually when others are very unconstrained minimal contact (ci = c)
is a best-response.
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Figure 3: Example value and costs (a), and utility (b), with the resulting
best-response (c) as a function of the contact level co chosen by others. For
parameters m = 50, α = 0.5, γ = 0.8, and δ(co) = 1− 0.6c5o.
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3.1 Equilibrium

Consider a large overall population, with a subpopulation of m potential
contacts per agent, and imagine that each agent’s individual influence on
any other’s utility function is minute in expectation, e.g., as would be the
case if the m potential contacts are drawn quasi-randomly (think of a random
collection of fellow diners, passengers on a bus, etc., on a given day).11

If no single agent meaningfully impacted any other’s expected utility, and
if best-responses were unique (and we’ve seen that they are, modulo the very
small number of corner cases spelled out in Lemma 1), then any possible
equilibrium would necessarily be symmetric, i.e., with ci = co for every agent
i. The “large population” assumption means all agents face the same effective
co; that combined with uniqueness of best-response means they will all have
the same optimal reaction.

With that informal motivation, we will restrict our attention to symmetric
outcomes going forward: I will use the term equilibrium to mean symmetric
pure strategy Nash equilibrium, and accordingly phrases like “there exists no
equilibrium” should not be taken to exclude the possible existence of other
types of equilibria.

I will henceforth use b(co) to denote the best-response function, charac-
terized in Lemma 1. An equilibrium occurs at any c that has the property
of being an element of b(c). Visually, this corresponds to an intersection
between the best-response curve and a 45-degree line (see Figure 4).

Theorem 1. Equilibrium characterization.

• c is an equilibrium if and only if:(
δ(c) > γ ∧ χ(c) ≤ c

)
∨ (δ(c) = γ ∧ α ≤ 1

)
∨ (δ(c) < γ ∧ α(γcm − γm) ≤ δ(c)cm − δ(c)m

)
• c ∈ (c, 1) is an equilibrium if and only if:(

δ(c) > γ ∧ χ(c) = c
) ∨ (

δ(c) = γ ∧ α = 1
)

11Admittedly, this completely fails to capture important real-world asymmetries: within-
household contacts are vastly more relevant than one-time encounters with passengers on
a train, etc.
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Figure 4: Equilibria correspond to the points where the best-response curve
intersects a 45-degree line from the origin. In this case there are three: one
at a point c ≈ 0.35 where δ(c) > γ, one where δ(c) = γ (since α = 1 here),
and one at c = 1 where δ(1) < γ.

• 1 is an equilibrium if and only if:(
δ(1) > γ ∧ χ(1) ≥ 1

)
∨ (δ(1) = γ ∧ α ≥ 1

)
∨ (δ(1) < γ ∧ α(γcm − γm) ≥ δ(1)cm − δ(1)m

)
Proof. For every c ∈ [c, 1], c is an equilibrium if and only if c ∈ b(c). Applying
Lemma 1 to c = c, c ∈ (c, 1), and c = 1 in turn, tracking the cases where
c ∈ b(c), directly yields the theorem.

The following very mild condition is sufficient to guarantee the existence
of at least one equilibrium.

Condition 1.

α /∈
[
1,

δ(1)cm − δ(1)m

γcm − γm

]

This condition will frequently be satisfied trivially (i.e., necessarily), be-
cause δ(1)cm−δ(1)m may be less than γcm−γm, yielding an empty interval.12

12For instance, say the number of possible contacts (m) is 50, and c = 0.02 (i.e., the
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Theorem 2. Given Condition 1, there is always an equilibrium, and for all
but at most two possible values of α, there is an equilibrium in which all
agents are playing a unique best-response.

Proof. Assume Condition 1. We need to show that there exists at least one
co ∈ [c, 1] such that co ∈ b(co), and only one such co for all but two possible
values that α could take.

If δ(1) > γ, then b(co) = {min{1,max{c, χ(co)}} }, ∀co ∈ [c, 1] (see
Lemma 1), and since this is a continuous function with range ∈ [0, 1], b(co) =
{co} at some co ∈ [c, 1].

If δ(1) ≤ γ and α > δ(1)cm−δ(1)m

γcm−γm , then ui(1, 1) > ui(c, 1) and thus b(1) =

{1}.
If δ(1) < δ(c) ≤ γ and α < 1, if there were no equilibrium then necessarily

ui(c, c) < ui(1, c) and ui(c, 1) > ui(1, 1), i.e.,

δ(c)cm − δ(c)m < α(γcm − γm) < δ(1)cm − δ(1)m (4)

Consider the function h(k) = kcm − km. As k goes from c to 1, h′(k) =
mkcm−1(1− km(1−c)) undergoes a single change in sign from positive to neg-
ative; i.e., h(k) increases at first and then decreases. Thus Eq. (4) is in-
compatible with δ(1) < δ(c) ≤ γ, given that α < 1,13 and either c ∈ b(c)
(uniquely so if α �= [δ(c)cm − δ(c)m]/[γcm − γm]) or 1 ∈ b(1) (uniquely so if
α �= [δ(1)cm − δ(1)m]/[γcm − γm]).

Finally if δ(1) ≤ γ < δ(c) and α < 1, then ∀co ∈ [
c, δ−1(γ)], b(co) =

min{1,max{c, χ(co)}}. But given that α < 1, as co approaches δ−1(γ) from
the left, min{1,max{c, χ(co)}} necessarily (smoothly) goes to and reaches
c. This holds because the numerator of Eq. (2) converges to a negative
constant, ln(α), while the denominator is non-negative and converges to 0.
Thus b(co) = min{1,max{c, χ(co)}} must equal c0 at at least one point co ∈[
c, δ−1(γ)).

As the condition perhaps suggests, there are indeed cases outside its spec-
ifications that have no equilibrium. See Figure 5 for an example. In it,
χ(c) > 1 for all c ∈ [c, δ−1(γ)), making maximal contact the best-response

minimal number of contacts is 1). If the probability of non-infection given a single contact,
assuming that others adopt no social distancing (δ(1)), is less than the value discount rate
(γ), then for any γ ≤ 0.92 the condition is guaranteed to be satisfied.

13h(δ(1)) > h(δ(c)) entails that δ(c) is after the peak, but h(δ(c)) < αh(γ) entails that
it is before.
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over that interval; then at a point prior to co = 1 the best-response switches
from maximal contact to minimal contact, excluding the possibility of an
equilibrium on the rest of the interval. Still, as Theorem 2 indicates, this is
an odd exception to the rule.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.8

1
best-response

Figure 5: An example with no equilibrium. As others distance less, maximal-
distancing replaces no-distancing as the best-response.

4 Social welfare

Now that we know what the equilibria are for a given set of inputs, we can
evaluate how good they are. We will first of all see that the free-rider problem
is indeed a problem here, for all inputs that yield anything other than only a
minimal- or maximal-contact equilibrium (in the latter case there’s nothing
left to free-ride on).

Proposition 1. In any equilibrium, the contact level is greater than or equal
to a socially optimal level; if the socially optimal contact level is non-extremal,
then any equilibrium contact level will be strictly greater than optimal.

Proof. Let ċ be a socially optimal contact level, i.e., omitting some irrelevant
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constants from the utility function Eq. (1),14

ċ ∈ argmax
c∈[c,1]

(
δ(c)cm − αγcm

)

If c ∈ [c, 1] is an equilibrium, then all agents are best-responding, and
therefore:

δ(c)cm − αγcm ≥ δ(c)ċm − αγ ċm

But c < ċ would entail (recalling that δ is decreasing):

δ(c)ċm − αγ ċm > δ(ċ)ċm − αγ ċm

This contradicts δ(c)cm − αγcm ≤ δ(ċ)ċm − αγ ċm, which must hold by opti-
mality of ċ. Therefore it must be the case that c ≥ ċ.

Given this, to prove the second half of the proposition it is sufficient to
show that if ċ ∈ (c, 1), then ċ is not an equilibrium. Letting W(c) denote the
per-agent welfare when the (symmetric) contact level is c, we have W(c) =
δ(c)cm − αγcm + (α− 1), and:

W′(c) = δ(c)cm
(
m ln(δ(c)) +

mcδ′(c)
δ(c)

)
− αm ln(γ)γcm

Therefore W′(c)
∣∣
c=ċ

= 0, which is a necessary condition for optimality of
non-extremal c, if and only if:

δ(ċ)ċm =
α ln(γ)γ ċm

ln(δ(ċ)) + ċδ′(ċ)
δ(ċ)

If the same ċ is an equilibrium, then the first-order conditions for the
agent utility function must likewise be satisfied at ċ. We have:

∂

∂ci
ui(ci, c) = m

(
ln(δ(c))δ(c)cim − α ln(γ)γcim

)
And ∂

∂ci
ui(ci, c)

∣∣
ci=c=ċ

= 0 if and only if:

ln(δ(ċ))

(
α ln(γ)γ ċm

ln(δ(ċ)) + ċδ′(ċ)
δ(ċ)

)
− α ln(γ)γcim = 0

14Specifically, when all agents choose contact level c, all obtain the same welfare, which
is δ(c)cm−αγcm+(α−1) per agent. It is a monotone transformation to omit the additive
constant α− 1.
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I.e., if and only if:

α ln(γ)γ ċm

(
ln(δ(ċ))

ln(δ(ċ)) + ċδ′(ċ)
δ(ċ)

− 1

)
= 0

This cannot be satisfied because δ is strictly decreasing everywhere on
the interval, and the result follows.

Not only are all equilibria “to the right of” (higher contact than) the
optimum, but even if social-welfare dips and rises as the overall contact level
increases, the best equilibrium is always the one involving least contact.

Proposition 2. If there are multiple equilibria, the one with lowest contact
level yields strictly greatest social welfare.

Proof. Consider two arbitrary equilibria c, ĉ ∈ [c, 1] with c < ĉ. The fact that
c is an equilibrium means there is no profitable deviation, and in particular ĉ
is not a profitable deviation. Moreover, δ(c) > δ(ĉ), since δ is monotonically
decreasing. We thus have:

δ(c)cm − αγcm ≥ δ(c)ĉm − αγ ĉm

> δ(ĉ)ĉm − αγ ĉm

The first and last quantities are expressions of (a monotone simplification of)
social welfare under c and ĉ, respectively. The claim follows.

Figure 6 adds a plot of social welfare (assuming symmetric adoption of
contact level c on the x-axis) to the plots from Figure 4. We can see how the
example conforms to the above two propositions, with all three equilibria to
the right of the social optimum, which occurs at c ≈ 0.287 generating per-
agent welfare ≈ 0.937, with the lowest equilibrium (c ≈ 0.356, for per-agent
welfare ≈ 0.903) generating vastly more welfare than the other two (which
both yield welfare ≈ 0).

5 Transmissibility changes

Viruses evolve over time, and in some cases mutations can occur that yield
variants with increased transmissibility or virulence. One such case is the
emergence of a SARS-CoV-2 variant in the United Kingdom towards the
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Figure 6: Welfare is plotted as a function of a universally adopted contact
level. All equilibria are to the right of the welfare peak, and that yielding
highest welfare is the one with lowest contact level.

end of 2020 that early studies estimated to be between 30% to 80% more
transmissible than wild-type SARS-CoV-2 [12, 11]. If a more transmissible
variant becomes predominant, the strategic considerations are changed.

To examine the possible impact, we can add one detail to δ, the function
representing probability of remaining uninfected after a single contact. We
imagine now that δ(co) = 1 − βg(co), for some β ∈ (0, 1] that captures
the probability of transmission given that the contact is infected, with g an
arbitrary increasing function with range (0, 1) representing the probability
that a single contact will be an infected person, given co.

Considering the maximal-contact equilibrium condition in Theorem 1,
noting that an increase in β can only yield a decrease in δ(co), we have the
following informal claim that will apply very generally, if not in every specific
case:

Claim 1. An increase in transmissibility can introduce a maximal-contact
equilibrium, but will not eliminate one.

Informally, the first case of the maximal-contact equilibrium condition
in Theorem 1 cannot be satisfied for any values of interest (δ(1), γ, and α
would all have to be placed at wild extremes), and the second case is an
extreme corner case that can be ignored for all practical purposes. That
leaves the third condition, δ(1) < γ ∧ α(γcm − γm) ≥ δ(1)cm − δ(1)m. If
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the first conjunct is satisfied for some value of β, then it clearly remains
satisfied for all greater values. The same will hold for the second conjunct if
we assume cm is relatively small, and m is large enough, because then the
condition’s satisfaction will hinge on whether αγcm ≥ δ(1)cm. As β increases,
δ(1) decreases, only making the condition more readily satisfied.

Figure 7 illustrates this effect for parameters m = 50, c = 0.02, γ = 0.85,
α = 1, and δ(co) = 1 − βc1.1o . When β is quite small — i.e., when it is
relatively unlikely that a single interaction with an infected person will yield
transmission — the maximal-contact outcome (c = 1) is not an equilibrium.
Once β reaches about 0.15, it is an equilibrium, and remains one for all
greater values of β, with increasing “robustness” in the sense that maximal
contact remains a best-response for an ever-widening range of choices by
others.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

Figure 7: Illustration of how ci = 1 becomes a best-response to an ever-
broadening range of co as β grows, given m = 50, c = 0.02, γ = 0.85, α = 1,
and δ(co) = 1− βc1.1o . c = 1 is thus an equilibrium for all and only β > 0.15.

Figure 8 illustrates equilibrium outcomes for two β values right around
the threshold that makes maximal contact an equilibrium in the example.

6 Interventions, manipulative and otherwise

In a scenario with equilibria that are far from welfare-optimal, a social plan-
ner will naturally seek interventions to improve the situation, or ensure that
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Figure 8: A small increase in transmissibility (β) here transforms a scenario
with a single high-welfare equilibrium (a) to one with three equilibria, two
of which are essentially worst-case welfare outcomes (b).

the best equilibrium is realized. We will briefly consider three potentially
impactful interventions.

6.1 Exaggerating costs

Proposition 1 indicates that, in the model we’re considering, there will essen-
tially always be some welfare loss due to insufficient social distancing. Even
the best equilibrium will involve free-riding, and this alone may motivate a
planner to try to push contact levels down by playing up infection costs.

But in some cases the motivation to do so can be extremely acute, because
the difference between a scenario with a decent equilibrium and one with only
a disastrous “give up on distancing” equilibrium can be razor thin.

Theorem 3. Consider arbitrary γ, δ, m, and c < 1. There exists an α′ ∈ 
+

such that maximal contact is an equilibrium if and only if α ≥ α′.

Proof. Theorem 1 describes a disjunction of three conditions, exactly one
of which will be operative depending on the values of δ(1) and γ, and the
satisfaction of which will yield c = 1 as an equilibrium. Each of the three
conditions involves a requirement on α which, after some algebraic manip-
ulation, respectively can expressed as: α ≥ ln(δ(1))(δ(1)/γ)m

ln(γ)
in the first case,

α ≥ 1 in the second case, and α ≥ δ(1)cm−δ(1)m

γcm−γm in the third case.
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Since all of these place finite lower bounds on α, the equilibrium condi-
tions will be satisfied for all α above some some finite threshold, and none
below.

Figure 9 demonstrates a dramatic case, where a minute decrease in α
turns a scenario with a single equilibrium generating worst-possible welfare
to one with a single equilibrium that is only moderately suboptimal.
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Figure 9: A small decrease in α, the relative weight applied to contact value
versus infection risk, transforms a scenario with only a bad equilibrium (a) to
one with only a good equilibrium (b). m = 50, γ = 0.95, δ(co) = 1− 0.1c1.2o .

One can imagine many forms this kind of intervention could take in prac-
tice, ranging from outright deception about the ramifications of becoming
infected, to actually changing experienced value and costs, say by making
indoor dining impossible (diminishing the value of dining-out contacts), or
creating a stigma for infection, or even making treatment financially costly.

6.2 Exaggerating the prevailing social distancing rate

Many scenarios will have two or three equilibria rather than just one. In such
cases, ending up in “the right” equilibrium can be critical to achieving high
welfare. For instance, reconsider Figure 6 — there is a low-contact, high-
welfare equilibrium at c ≈ 0.35 and a maximal-contact, minimal-welfare one
(c = 1); the third equilibrium has all contact levels as a best-response, and
is thus unstable and can probably be disregarded. If individuals could be
persuaded, either truthfully or otherwise, that “everyone” will be exerting a
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high-level of restraint and social distancing, perhaps people would converge
on the high-welfare equilibrium.

We know from Theorem 2 that the best equilibrium is always the one
with lowest contact level. Therefore, the above reasoning may lead to a
general tendency to try to bias beliefs towards the notion that prevailing
social contact levels are low.

6.3 Enabling lower contact levels

Sometimes a bad maximal-contact equilibrium obtains only because even the
minimal feasible contact level is not low enough to avoid the worst costs —
imagine a (concave) cost curve, as a function of individual contact level, that
is very steep initially and flattens out very quickly; it may only be worth
forgoing the value of social contacts if you can avoid that steep cost. In such
cases, making lower contact levels feasible may induce a transition from a
bad equilibrium scenario to a good equilibrium scenario.

Theorem 4. Consider arbitrary α, γ, δ, and m with δ(1) < γ. There exists
a c′ ∈ [0, 1] such that maximal contact is an equilibrium if and only if c ≥ c′.

Proof. To prove the theorem it is sufficient to show that an increase in c can
never remove an equilibrium at c = 1. Theorem 1 characterizes the three
individually sufficient conditions for equilibrium at c = 1. Only the third
involves c in any way, requiring that δ(1) < γ and α(γcm − γm)− (δ(1)cm −
δ(1)m) ≥ 0. Taking the derivative of the left hand side of the latter with
respect to c, we get:

m
(
α log(γ)γcm − log(δ(1))δ(1)cm

)
If δ(1) < γ, then this is positive for all values of c, and thus if α(γc′m −

γm)− (δ(1)c
′m− δ(1)m) ≥ 0, then α(γcm− γm)− (δ(1)cm− δ(1)m) ≥ 0 for all

c > c′, which completes the proof.

Figure 10 reproduces the example from Figure 3, but in this case also con-
sidering an alternative where the minimum number of contacts is 2 rather
than 1. In the cm = 2 case, there is a full-contact equilibrium with devastat-
ingly low welfare, while in the cm = 1 case there is only a single equilibrium
and it is approximately optimal.

22



0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

best-response
equilibrium
welfare

(a)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

best-response
equilibrium
welfare

(b)

Figure 10: A small decrease in c, changing the minimum number of possible
contacts from 2 to 1, eliminates the terrible full-contact equilibrium. m = 50,
γ = 0.8, δ(co) = 1− 0.6c5o

7 Conclusion

Even the most sophisticated attempts to map the course of the COVID-19
pandemic have struggled to predict outcomes with great precision, especially
for longer time-horizons [13]. This is perhaps unsurprising when one considers
the stubborn uncertainties of viral evolution and government policy-making,
and also of behavioral response at the level of people going about their lives.

I have targeted an aspect of that last variable, aiming to hone intuitions
about how strategic considerations at the individual level can impact the
gross shape of pandemic outcomes: a person may rationally forgo distancing
both when others distance very little and when they distance very much
(even if not in the middle); relatively small changes in transmissibility or the
perceived cost of infection can have dramatically disproportionate effects on
behavior; to the extent that people are selfish and well-informed, outcomes
will involve less distancing than is optimal.

To some readers that last point may seem sufficient to motivate forceful
intervention, but I will suggest a couple reasons to be cautious. First, the
absence in my model of altruistic motives and behavior, and the absence of
positive externality to others from making contact, may present a distorted
picture — might individuals even be so concerned about the possibility of
infecting others that they over-distance in some cases?

More generally, even models that attempt to grapple with every observ-
able high-level feature of this setting will be blind to the many unmeasurable
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specifics of dilemmas facing individuals and families. Just as models in this
domain often fail to predict the actual course of events, well-intended inter-
ventions can end up being tragically destructive. When everyone’s field of
vision is limited, but in different ways, who should set the course?
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